留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LSM14B coordinates protein component expression in the P-body and controls oocyte maturation

Huiru Zhang Tao Zhang Xiang Wan Chang Chen Shu Wang Dongdong Qin Lufan Li Luping Yu Xin Wu

Huiru Zhang, Tao Zhang, Xiang Wan, Chang Chen, Shu Wang, Dongdong Qin, Lufan Li, Luping Yu, Xin Wu. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation[J]. 遗传学报. doi: 10.1016/j.jgg.2023.07.006
引用本文: Huiru Zhang, Tao Zhang, Xiang Wan, Chang Chen, Shu Wang, Dongdong Qin, Lufan Li, Luping Yu, Xin Wu. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation[J]. 遗传学报. doi: 10.1016/j.jgg.2023.07.006
Huiru Zhang, Tao Zhang, Xiang Wan, Chang Chen, Shu Wang, Dongdong Qin, Lufan Li, Luping Yu, Xin Wu. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.006
Citation: Huiru Zhang, Tao Zhang, Xiang Wan, Chang Chen, Shu Wang, Dongdong Qin, Lufan Li, Luping Yu, Xin Wu. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.006

LSM14B coordinates protein component expression in the P-body and controls oocyte maturation

doi: 10.1016/j.jgg.2023.07.006
基金项目: 

We are grateful to Dr. Henyu Fan at Zhejiang University for his valuable comments and review of this manuscript. We thank Nature Research Editing Service and American Journal Experts for help with reviewing the manuscript for grammar. We also thank all the members of the Wu Laboratory for their valuable assistance. The work was supported by the National Key R&D Program of China (2021YFC2700201 to XW) and the National Natural Science Foundation of China (32070831, 32270897 to XW).

详细信息
    通讯作者:

    Luping Yu,E-mail:yuluping@njmu.edu.cn

    Xin Wu,E-mail:xinwu@njmu.edu.cn

LSM14B coordinates protein component expression in the P-body and controls oocyte maturation

Funds: 

We are grateful to Dr. Henyu Fan at Zhejiang University for his valuable comments and review of this manuscript. We thank Nature Research Editing Service and American Journal Experts for help with reviewing the manuscript for grammar. We also thank all the members of the Wu Laboratory for their valuable assistance. The work was supported by the National Key R&D Program of China (2021YFC2700201 to XW) and the National Natural Science Foundation of China (32070831, 32270897 to XW).

  • 摘要: The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that LSM family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through regulation of the P-body.
  • Adhikari, D., Liu, K., 2014. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol. Cell Endocrinol. 382, 480-487.
    Albrecht, M., Lengauer, T., 2004. Novel Sm-like proteins with long C-terminal tails and associated methyltransferases. FEBS Lett. 569, 18-26.
    Andrei, M.A., Ingelfinger, D., Heintzmann, R., Achsel, T., Rivera-Pomar, R., Lührmann, R., 2005. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11, 717-727.
    Arney, K.L., Fisher, A.G., 2004. Epigenetic aspects of differentiation. J. Cell Sci. 117, 4355-4363.
    Ayache, J., Bénard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M., Weil, D., 2015. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell 26, 2579-2595.
    Ballantyne, S., Daniel, D.L., Jr., Wickens, M., 1997. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633-1648.
    Bilmez, Y., Talibova, G., Ozturk, S., 2022. Dynamic changes of histone methylation in mammalian oocytes and early embryos. Histochem. Cell Biol. 157, 7-25.
    Black, J.C., Van Rechem, C., Whetstine, J.R., 2012. Histone lysine methylation dynamics:establishment, regulation, and biological impact. Mol. Cell 48, 491-507.
    Bloch, D.B., Sinow, C.O., Sauer, A.J., Corman, B.H.P., 2023. Assembly and regulation of the mammalian mRNA processing body. PLoS ONE 18, e0282496.
    Boag, P.R., Nakamura, A., Blackwell, T.K., 2005. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 132, 4975-4986.
    Bonnet-Garnier, A., Feuerstein, P., Chebrout, M., Fleurot, R., Jan, H.U., Debey, P., Beaujean, N., 2012. Genome organization and epigenetic marks in mouse germinal vesicle oocytes. Int. J. Dev. Biol. 56, 877-887.
    Bouftas, N., Wassmann, K., 2019. Cycling through mammalian meiosis:B-type cyclins in oocytes. Cell Cycle 18, 1537-1548.
    Brandmann, T., Fakim, H., Padamsi, Z., Youn, J.Y., Gingras, A.C., Fabian, M.R., Jinek, M., 2018. Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes. EMBO J. 37, e97869.
    Brengues, M., Teixeira, D., Parker, R., 2005. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489.
    Cheng, S., Altmeppen, G., So, C., Welp, L.M., Penir, S., Ruhwedel, T., Menelaou, K., Harasimov, K., Stützer, A., Blayney, M., et al., 2022. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 378, eabq4835.
    Daldello, E.M., Luong, X.G., Yang, C.R., Kuhn, J., Conti, M., 2019. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 146, dev172734.
    Das, P.P., Shao, Z., Beyaz, S., Apostolou, E., Pinello, L., De Los Angeles, A., O'Brien, K., Atsma, J.M., Fujiwara, Y., Nguyen, M., et al., 2014. Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity. Mol. Cell 53, 32-48.
    Debey, P., Szöllösi, M.S., Szöllösi, D., Vautier, D., Girousse, A., Besombes, D., 1993. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol. Reprod. Dev. 36, 59-74.
    Di Stefano, B., Luo, E.C., Haggerty, C., Aigner, S., Charlton, J., Brumbaugh, J., Ji, F., Rabano Jiménez, I., Clowers, K.J., Huebner, A.J., et al., 2019. The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell 25, 622-638.e613.
    Eulalio, A., Behm-Ansmant, I., Izaurralde, E., 2007. P bodies:at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8, 9-22.
    Flemr, M., Ma, J., Schultz, R.M., Svoboda, P., 2010. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 82, 1008-1017.
    Franks, T.M., Lykke-Andersen, J., 2008. The control of mRNA decapping and P-body formation. Mol. Cell 32, 605-615.
    Gorbsky, G.J., 2015. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 282, 2471-2487.
    Grewal, S.I., Elgin, S.C., 2002. Heterochromatin:new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178-187.
    Huang, J.H., Ku, W.C., Chen, Y.C., Chang, Y.L., Chu, C.Y., 2017. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci. Rep. 7, 42853.
    Jones, K.T., 2004. Turning it on and off:M-phase promoting factor during meiotic maturation and fertilization. Mol. Hum. Reprod. 10, 1-5.
    Kageyama, S., Liu, H., Kaneko, N., Ooga, M., Nagata, M., Aoki, F., 2007. Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133, 85-94.
    Kamenska, A., Simpson, C., Vindry, C., Broomhead, H., Bénard, M., Ernoult-Lange, M., Lee, B.P., Harries, L.W., Weil, D., Standart, N., 2016. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Res. 44, 6318-6334.
    Kato, Y., Iwamori, T., Ninomiya, Y., Kohda, T., Miyashita, J., Sato, M., Saga, Y., 2019. ELAVL2-directed RNA regulatory network drives the formation of quiescent primordial follicles. EMBO Rep. 20, e48251.
    Kato, Y., Saga, Y., 2023. Antagonism between DDX6 and PI3K-AKT signaling is an oocyte-intrinsic mechanism controlling primordial follicle growth. Biol. Reprod. ioad043.
    Labbé, J.C., Capony, J.P., Caput, D., Cavadore, J.C., Derancourt, J., Kaghad, M., Lelias, J.M., Picard, A., Dorée, M., 1989. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 8, 3053-3058.
    Ladomery, M., Sommerville, J., 2015. The Scd6/Lsm14 protein xRAPB has properties different from RAP55 in selecting mRNA for early translation or intracellular distribution in Xenopus oocytes. Biochim. Biophys. Acta. 1849, 1363-1373.
    Li, H., Zhao, H., Yang, C., Su, R., Long, M., Liu, J., Shi, L., Xue, Y., Su, Y.Q., 2023. LSM14B is an oocyte-specific RNA-binding protein indispensable for maternal mRNA metabolism and oocyte development in mice. Adv. Sci. 10, e2300043.
    Li, J., Tang, J.X., Cheng, J.M., Hu, B., Wang, Y.Q., Aalia, B., Li, X.Y., Jin, C., Wang, X.X., Deng, S.L., et al., 2018. Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. J. Cell Biol. 217, 3901-3911.
    Liu, X.M., Yan, M.Q., Ji, S.Y., Sha, Q.Q., Huang, T., Zhao, H., Liu, H.B., Fan, H.Y., Chen, Z.J., 2018. Loss of oocyte Rps26 in mice arrests oocyte growth and causes premature ovarian failure. Cell Death Dis. 9, 1144.
    Luo, Y., Na, Z., Slavoff, S.A., 2018. P-bodies:composition, properties, and functions. Biochemistry 57, 2424-2431.
    Marnef, A., Sommerville, J., Ladomery, M.R., 2009. RAP55:insights into an evolutionarily conserved protein family. Int. J. Biochem. Cell Biol. 41, 977-981.
    Matsumoto, K., Nakayama, H., Yoshimura, M., Masuda, A., Dohmae, N., Matsumoto, S., Tsujimoto, M., 2012. PRMT1 is required for RAP55 to localize to processing bodies. RNA Biol. 9, 610-623.
    Matsumura, Y., Nakaki, R., Inagaki, T., Yoshida, A., Kano, Y., Kimura, H., Tanaka, T., Tsutsumi, S., Nakao, M., Doi, T., et al., 2015. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell 60, 584-596.
    Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., Grewal, S.I., 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110-113.
    Nemeroff, M.E., Barabino, S.M., Li, Y., Keller, W., Krug, R.M., 1998. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3' end formation of cellular pre-mRNAs. Mol. Cell 1, 991-1000.
    Nurse, P., 1990. Universal control mechanism regulating onset of M-phase. Nature 344, 503-508.
    Parker, R., Sheth, U., 2007. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635-646.
    Peter, M., Le Peuch, C., Labbé, J.C., Meyer, A.N., Donoghue, D.J., Dorée, M., 2002. Initial activation of cyclin-B1-cdc2 kinase requires phosphorylation of cyclin B1. EMBO Rep. 3, 551-556.
    Polański, Z., Homer, H., Kubiak, J.Z., 2012. Cyclin B in mouse oocytes and embryos:importance for human reproduction and aneuploidy. Results Probl. Cell Differ. 55, 69-91.
    Richter, J.D., Sonenberg, N., 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477-480.
    Schlesinger, S., Meshorer, E., 2019. Open chromatin, epigenetic plasticity, and nuclear organization in pluripotency. Dev. Cell 48, 135-150.
    Sengupta, M.S., Low, W.Y., Patterson, J.R., Kim, H.M., Traven, A., Beilharz, T.H., Colaiácovo, M.P., Schisa, J.A., Boag, P.R., 2013. ifet-1 is a broad-scale translational repressor required for normal P granule formation in C. elegans. J. Cell Sci. 126, 850-859.
    Sha, Q.Q., Dai, X.X., Dang, Y., Tang, F., Liu, J., Zhang, Y.L., Fan, H.Y., 2017. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 144, 452-463.
    Smillie, D.A., Sommerville, J., 2002. RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J. Cell Sci. 115, 395-407.
    Sorensen, R.A., Wassarman, P.M., 1976. Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50, 531-536.
    Standart, N., Minshall, N., 2008. Translational control in early development:CPEB, P-bodies and germinal granules. Biochem. Soc. Trans. 36, 671-676.
    Tanaka, K.J., Ogawa, K., Takagi, M., Imamoto, N., Matsumoto, K., Tsujimoto, M., 2006. RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J. Biol. Chem. 281, 40096-40106.
    Viegas, J.O., Meshorer, E., 2019. The princess and the P:pluripotent stem cells and p-Bodies. Cell Stem Cell 25, 589-591.
    Wang, L., Wang, Z.B., Zhang, X., FitzHarris, G., Baltz, J.M., Sun, Q.Y., Liu, X.J., 2008. Brefeldin A disrupts asymmetric spindle positioning in mouse oocytes. Dev. Biol. 313, 155-166.
    Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F., Weil, D., 2005. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci. 118, 981-992.
    Wilhelm, J.E., Hilton, M., Amos, Q., Henzel, W.J., 2003. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197-1204.
    Yang, C.R., Rajkovic, G., Daldello, E.M., Luong, X.G., Chen, J., Conti, M., 2020. The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation. Nat. Commun. 11, 1399.
    Yang, W.H., Yu, J.H., Gulick, T., Bloch, K.D., Bloch, D.B., 2006. RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA 12, 547-554.
    Yu, L., Zhang, H., Guan, X., Qin, D., Zhou, J., Wu, X., 2021. Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development 148, dev196931.
    Zachariae, W., Shevchenko, A., Andrews, P.D., Ciosk, R., Galova, M., Stark, M.J., Mann, M., Nasmyth, K., 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast:identification of a subunit related to cullins. Science 279, 1216-1219.
    Zhang, T., Li, Y., Li, H., Ma, X.S., Ouyang, Y.C., Hou, Y., Schatten, H., Sun, Q.Y., 2017. RNA-associated protein LSM family member 14 controls oocyte meiotic maturation through regulating mRNA pools. J. Reprod. Dev. 63, 383-388.
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  66
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-07-14
  • 修回日期:  2023-07-13
  • 网络出版日期:  2023-07-21

目录

    /

    返回文章
    返回