留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment

Yuxi Chen Xiao Luo Rui Kang Kaixin Cui Jianping Ou Xiya Zhang Puping Liang

Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment[J]. 遗传学报. doi: 10.1016/j.jgg.2023.07.007
引用本文: Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment[J]. 遗传学报. doi: 10.1016/j.jgg.2023.07.007
Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.007
Citation: Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.007

Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment

doi: 10.1016/j.jgg.2023.07.007
基金项目: 

This work was supported by the National Natural Science Foundation (32001063, 82201769), the Guangdong Special Support Program (2019BT02Y276), the Guangdong Basic and Applied Basic Research Foundation (2021A1515010759, 2023A1515010176), the grant from MOE Key Laboratory of Gene Function and Regulation, the Guangzhou Science and Technology Planning Project (202201020411, 2023A04J1952), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ptpy59).

详细信息
    通讯作者:

    Xiya Zhang,Email addresses:zhangxiya@mail.sysu.edu.cn

    Puping Liang,Email addresses:liangpp5@mail.sysu.edu.cn

Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment

Funds: 

This work was supported by the National Natural Science Foundation (32001063, 82201769), the Guangdong Special Support Program (2019BT02Y276), the Guangdong Basic and Applied Basic Research Foundation (2021A1515010759, 2023A1515010176), the grant from MOE Key Laboratory of Gene Function and Regulation, the Guangzhou Science and Technology Planning Project (202201020411, 2023A04J1952), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ptpy59).

  • 摘要:

    Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides new insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.

  • Aboulenain, S., Saber, A.Y., 2021. Primary Osteoarthritis.
    Abramson, S.B., Attur, M., 2009. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11, 227.
    Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al., 2017. RNA targeting with CRISPR-Cas13. Nature 550, 280-284.
    Abudayyeh, O.O., Gootenberg, J.S., Franklin, B., Koob, J., Kellner, M.J., Ladha, A., Joung, J., Kirchgatterer, P., Cox, D.B.T., Zhang, F., 2019. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382-386.
    Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al., 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.
    Adikusuma, F., Piltz, S., Corbett, M.A., Turvey, M., McColl, S.R., Helbig, K.J., Beard, M.R., Hughes, J., Pomerantz, R.T., Thomas, P.Q., 2018. Large deletions induced by Cas9 cleavage. Nature 560, E8-E9.
    Agne, M., Blank, I., Emhardt, A.J., Gabelein, C.G., Gawlas, F., Gillich, N., Gonschorek, P., Juretschke, T.J., Kramer, S.D., Louis, N., et al., 2014. Modularized CRISPR/dCas9 effector toolkit for target-specific gene regulation. ACS synth. Biol. 3, 986-989.
    Ajdary, M., Moosavi, M.A., Rahmati, M., Falahati, M., Mahboubi, M., Mandegary, A., Jangjoo, S., Mohammadinejad, R., Varma, R.S., 2018. Health concerns of various nanoparticles:a review of their in vitro and in vivo toxicity. Nanomaterials 8, 634.
    Al-Shayeb, B., Skopintsev, P., Soczek, K.M., Stahl, E.C., Li, Z., Groover, E., Smock, D., Eggers, A.R., Pausch, P., Cress, B.F., et al., 2022. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574-4586.
    Ala-Kokko, L., Baldwin, C.T., Moskowitz, R.W., Prockop, D.J., 1990. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc. Natl. Acad. Sci. U. S. A. 87, 6565-6568.
    Alanis-Lobato, G., Zohren, J., McCarthy, A., Fogarty, N.M.E., Kubikova, N., Hardman, E., Greco, M., Wells, D., Turner, J.M.A., Niakan, K.K., 2021. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc. Natl. Acad. Sci. U. S. A. 118,e2004832117.
    Altan, Z., Sahin, Y., 2022. miR-203 suppresses pancreatic cancer cell proliferation and migration by modulating DUSP5 expression. Mol. Cell Probes 66, 101866.
    Altman, R.D., 2010. Early management of osteoarthritis. Am J Manag Care 16 Suppl Management, S41-S47.
    Alves, E., Taifour, S., Dolcetti, R., Chee, J., Nowak, A.K., Gaudieri, S., Blancafort, P., 2021.Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular therapy. Mol. Ther. Methods Clin. Dev. 21, 592-606.
    Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., Lombardo, A., 2016. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell 167, 219-232.
    Ameye, L.G., Chee, W.S., 2006. Osteoarthritis and nutrition. From nutraceuticals to functional foods:a systematic review of the scientific evidence. Arthritis Res. Ther. 8, R127.
    Amrani, N., Gao, X.D., Liu, P., Edraki, A., Mir, A., Ibraheim, R., Gupta, A., Sasaki, K.E., Wu, T., Donohoue, P.D., et al., 2018. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19, 214.
    Anzalone, A.V., Gao, X.D., Podracky, C.J., Nelson, A.T., Koblan, L.W., Raguram, A., Levy, J.M., Mercer, J.A.M., Liu, D.R., 2022. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731-740.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.arc, O.C., Zeggini, E., Panoutsopoulou, K., Southam, L., Rayner, N.W., Day-Williams, A.G., Lopes, M.C., Boraska, V., Esko, T., Evangelou, E., et al., 2012. Identification of new susceptibility loci for osteoarthritis (arcOGEN):a genome-wide association study. Lancet 380, 815-823.
    Arden, N., Nevitt, M.C., 2006. Osteoarthritis:epidemiology. Best Pract. Res. Clin. Rheumatol. 20, 3-25.
    Arend, W.P., Malyak, M., Guthridge, C.J., Gabay, C., 1998. Interleukin-1 receptor antagonist:role in biology. Annu. Rev. Immunol. 16, 27-55.
    Arthur, A., Zannettino, A., Gronthos, S., 2009. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J. Cell Physiol. 218, 237-245.
    Ashraf, S., Kim, B.J., Park, S., Park, H., Lee, S.H., 2019. RHEB gene therapy maintains the chondrogenic characteristics and protects cartilage tissue from degenerative damage during experimental murine osteoarthritis. Osteoarthritis Cartilage 27, 1508-1517.
    Bae, S., Kweon, J., Kim, H.S., Kim, J.S., 2014. Microhomology-based choice of Cas9 nuclease target sites. Nat. methods 11, 705-706.
    Balboa, D., Weltner, J., Eurola, S., Trokovic, R., Wartiovaara, K., Otonkoski, T., 2015. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem cell reports 5, 448-459.
    Banskota, S., Raguram, A., Suh, S., Du, S.W., Davis, J.R., Choi, E.H., Wang, X., Nielsen, S.C., Newby, G.A., Randolph, P.B., et al., 2022. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250-265.
    Bao, Z.H., Jain, S., Jaroenpuntaruk, V., Zhao, H.M., 2017. Orthogonal Genetic Regulation in Human Cells Using Chemically Induced CRISPR/Cas9 Activators. ACS synthetic biology 6, 686-693.
    Bassett, A., Liu, J.L., 2014. CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69, 128-136.
    Bi, D., Yao, J., Wang, Y., Qin, G., Zhang, Y., Wang, Y., Zhao, J., 2021. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos.Reproduction 162, 149-160.
    Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429-7437.
    Bitton, R., 2009. The economic burden of osteoarthritis. Am J. Manag. Care 15(8 Suppl), S230-S235.
    Bodick, N., Lufkin, J., Willwerth, C., Kumar, A., Bolognese, J., Schoonmaker, C., Ballal, R., Hunter, D., Clayman, M., 2015. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee:a randomized clinical trial. J.
    Bone Joint Surg. Am. 97, 877-888.
    Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D., 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561.
    Bonato, A., Fisch, P., Ponta, S., Fercher, D., Manninen, M., Weber, D., Eklund, K.K., Barreto, G., Zenobi-Wong, M., 2023. Engineering Inflammation-Resistant Cartilage:Bridging Gene Therapy and Tissue Engineering. Adv. Healthc Mater, e2202271.
    Bortoluzzi, A., Furini, F., Scire, C.A., 2018. Osteoarthritis and its management-Epidemiology, nutritional aspects and environmental factors. Autoimmun Rev. 17, 1097-1104.
    Bosch, J.A., Birchak, G., Perrimon, N., 2021. Precise genome engineering in Drosophila using prime editing. Proc. Natl. Acad. Sci. U. S. A. 118, e2021996118.
    Boutin, J., Rosier, J., Cappellen, D., Prat, F., Toutain, J., Pennamen, P., Bouron, J., Rooryck, C., Merlio, J.P., Lamrissi-Garcia, I., et al., 2021. CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 12, 4922.
    Bowden, A.R., Morales-Juarez, D.A., Sczaniecka-Clift, M., Agudo, M.M., Lukashchuk, N., Thomas, J.C., Jackson, S.P., 2020. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. eLife 9, e55325.
    Brandt, K.D., Radin, E.L., Dieppe, P.A., van de Putte, L., 2006. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 65, 1261-1264.
    Braun, S.M.G., Kirkland, J.G., Chory, E.J., Husmann, D., Calarco, J.P., Crabtree, G.R., 2017. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560.
    Brittberg, M., Gersoff, W., 2010. Cartilage Surgery:An Operative Manual, 1st Edition ed. Saunders.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889- 895.
    Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
    Buchman, A., Brogan, D.J., Sun, R.C., Yang, T., Hsu, P., Akbari, O.S., 2020. Programmable RNA Targeting Using CasRx in Flies. Crispr J. 3, 164-176.
    Campa, C.C., Weisbach, N.R., Santinha, A.J., Incarnato, D., Platt, R.J., 2019. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887-893.
    Cano-Rodriguez, D., Gjaltema, R.A., Jilderda, L.J., Jellema, P., Dokter-Fokkens, J., Ruiters, M.H., Rots, M.G., 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284.
    Cao, Y., Tang, S., Nie, X., Zhou, Z., Ruan, G., Han, W., Zhu, Z., Ding, C., 2021. Decreased miR-214-3p activates NF-kappaB pathway and aggravates osteoarthritis progression. EBioMedicine 65, 103283.
    Caron, M.M., Emans, P.J., Coolsen, M.M., Voss, L., Surtel, D.A., Cremers, A., van Rhijn, L.W., Welting, T.J., 2012. Redifferentiation of dedifferentiated human articular chondrocytes:comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20, 1170-1178.
    Chai, A.C., Cui, M., Chemello, F., Li, H., Chen, K., Tan, W., Atmanli, A., McAnally, J.R., Zhang, Y., Xu, L., et al., 2023. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401-411.
    Chapman, K., Takahashi, A., Meulenbelt, I., Watson, C., Rodriguez-Lopez, J., Egli, R., Tsezou, A., Malizos, K.N., Kloppenburg, M., Shi, D., et al., 2008. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility. Hum.Mol. Genet. 17, 1497-1504.
    Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., E, P.R.I., Lin, S., Kiani, S., Guzman, C.D., Wiegand, D.J., et al., 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. methods 12, 326-328.
    Che, W., Ye, S., Cai, A., Cui, X., Sun, Y., 2020. CRISPR-Cas13a Targeting the Enhancer RNA-SMAD7e Inhibits Bladder Cancer Development Both in vitro and in vivo. Front Mol. Biosci. 7, 607740.
    Chemello, F., Chai, A.C., Li, H., Rodriguez-Caycedo, C., Sanchez-Ortiz, E., Atmanli, A., Mireault, A.A., Liu, N., Bassel-Duby, R., Olson, E.N., 2021. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 7, eabg4910.
    Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., Doudna, J.A., 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410.
    Chen, L., Park, J.E., Paa, P., Rajakumar, P.D., Prekop, H.T., Chew, Y.T., Manivannan, S.N., Chew, W.L., 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384.
    Chen, L., Zhang, S., Xue, N., Hong, M., Zhang, X., Zhang, D., Yang, J., Bai, S., Huang, Y., Meng, H., et al., 2023a. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101-110.
    Chen, L., Zhu, B., Ru, G., Meng, H., Yan, Y., Hong, M., Zhang, D., Luan, C., Zhang, S., Wu, H., et al., 2023b. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663-672.
    Chen, L.F., Lin, Y.T., Gallegos, D.A., Hazlett, M.F., Gomez-Schiavon, M., Yang, M.G., Kalmeta, B., Zhou, A.S., Holtzman, L., Gersbach, C.A., et al., 2019. Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes. Cell Rep. 26, 1174-1188.
    Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.-F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al., 2021. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.
    Chen, X., Shi, Y., Xue, P., Ma, X., Li, J., Zhang, J., 2020. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3.Arthritis Res. Ther. 22, 256.
    Chen, Y., Hu, Y., Wang, X., Luo, S., Yang, N., Chen, Y., Li, Z., Zhou, Q., Li, W., 2022. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation (Camb) 3, 100264.
    Chen, Y., Jiang, H., Wang, T., He, D., Tian, R., Cui, Z., Tian, X., Gao, Q., Ma, X., Yang, J., et al., 2020a.In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Res. 178, 104794.
    Chen, Y., Liu, J., Zhi, S., Zheng, Q., Ma, W., Huang, J., Liu, Y., Liu, D., Liang, P., Songyang, Z., 2020b.Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Nat.Commun. 11, 3136.
    Chen, Y., Zhang, L., Li, E., Zhang, G., Hou, Y., Yuan, W., Qu, W., Ding, L., 2020c. Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci. 253, 117685.
    Chen, Y.X., Zhi, S.Y., Liu, W.L., Wen, J.K., Hu, S.H., Cao, T.Q., Sun, H.W., Li, Y., Huang, L., Liu, Y.Z., et al., 2020. Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods 4.
    Cheng, A.W., Jillette, N., Lee, P., Plaskon, D., Fujiwara, Y., Wang, W., Taghbalout, A., Wang, H., 2016.
    Casilio:a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26, 254-257.
    Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., Rangarajan, S., Shivalila, C.S., Dadon, D.B., Jaenisch, R., 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163-1171.
    Cheng, F., Hu, H., Sun, K., Yan, F., Geng, Y., 2020. miR-455-3p enhances chondrocytes apoptosis and inflammation by targeting COL2A1 in the in vitro osteoarthritis model. Biosci Biotechnol. Biochem. 84, 695-702.
    Chevalier, X., Goupille, P., Beaulieu, A.D., Burch, F.X., Bensen, W.G., Conrozier, T., Loeuille, D., Kivitz, A.J., Silver, D., Appleton, B.E., 2009. Intraarticular injection of anakinra in osteoarthritis of the knee:a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344-352.
    Chew, W.L., Tabebordbar, M., Cheng, J.K.W., Mali, P., Wu, E.Y., Ng, A.H.M., Zhu, K.X., Wagers, A.J., Church, G.M., 2016. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. methods 13, 868- 874.
    Cho, S.W., Kim, S., Kim, J.M., Kim, J.S., 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230-232.
    Choi, J., Chen, W., Suiter, C.C., Lee, C., Chardon, F.M., Yang, W., Leith, A., Daza, R.M., Martin, B., Shendure, J., 2021. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218-226.
    Choudhury, S.R., Cui, Y., Lubecka, K., Stefanska, B., Irudayaraj, J., 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545-46556.
    Colognori, D., Trinidad, M., Doudna, J.A., 2023. Precise transcript targeting by CRISPR-Csm complexes.Nat. Biotechnol..
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., Noel, D., 2017. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 7, 16214.
    Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., Noel, D., 2018.Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8, 1399-1410.
    Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F., 2017.RNA editing with CRISPR-Cas13. Science 358, 1019-1027.
    Cucchiarini, M., Asen, A.K., Goebel, L., Venkatesan, J.K., Schmitt, G., Zurakowski, D., Menger, M.D., Laschke, M.W., Madry, H., 2018. Effects of TGF-beta Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. Am J. Sports Med. 46, 1987- 1996.
    Cullot, G., Boutin, J., Toutain, J., Prat, F., Pennamen, P., Rooryck, C., Teichmann, M., Rousseau, E., Lamrissi-Garcia, I., Guyonnet-Duperat, V., et al., 2019. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136.
    Davatchi, F., Sadeghi Abdollahi, B., Mohyeddin, M., Nikbin, B., 2016. Mesenchymal stem cell therapy for knee osteoarthritis:5 years follow-up of three patients. Int. J. Rheum. Dis. 19, 219-225.
    Della Ragione, F., Vacca, M., Fioriniello, S., Pepe, G., D'Esposito, M., 2016. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct. Genomics 15, 420-431.
    Deng, L., Ren, R., Liu, Z., Song, M., Li, J., Wu, Z., Ren, X., Fu, L., Li, W., Zhang, W., et al., 2019.Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat. Commun.10, 3329.
    Dernedde, J., Rausch, A., Weinhart, M., Enders, S., Tauber, R., Licha, K., Schirner, M., Zugel, U., von Bonin, A., Haag, R., 2010. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation.Proc. Natl. Acad. Sci. U. S. A. 107, 19679-19684.
    Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S., 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J.Bacteriol..190, 1390-1400.
    Doman, J.L., Raguram, A., Newby, G.A., Liu, D.R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. biotechnol. 38, 620-628.
    East-Seletsky, A., O'Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H., Tjian, R., Doudna, J.A., 2016.Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.Nature 538, 270-273.
    Egli, R.J., Southam, L., Wilkins, J.M., Lorenzen, I., Pombo-Suarez, M., Gonzalez, A., Carr, A., Chapman, K., Loughlin, J., 2009. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 60, 2055-2064.
    Enache, O.M., Rendo, V., Abdusamad, M., Lam, D., Davison, D., Pal, S., Currimjee, N., Hess, J., Pantel, S., Nag, A., et al., 2020. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat.Genet. 52, 662-668.
    Esposito, R., Polidori, T., Meise, D.F., Pulido-Quetglas, C., Chouvardas, P., Forster, S., Schaerer, P., Kobel, A., Schlatter, J., Kerkhof, E., et al., Ochsenbein, A.F., Riether, C., Johnson, R., 2022. Multi-hallmark long noncoding RNA maps reveal non-small cell lung cancer vulnerabilities. Cell Genom 2, 100171.
    Fang, P., Zhang, L.X., Hu, Y., Zhang, L., Zhou, L.W., 2019. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 23, 10459-10469.
    Farhang, N., Brunger, J.M., Stover, J.D., Thakore, P.I., Lawrence, B., Guilak, F., Gersbach, C.A., Setton, L.A., Bowles, R.D., 2017. CRISPR-Based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738-749.
    Farzadfard, F., Perli, S.D., Lu, T.K., 2013. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604-613.
    Fellows, C.R., Matta, C., Zakany, R., Khan, I.M., Mobasheri, A., 2016. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front. Genet. 7, 213.
    Felson, D.T., 2009. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 11, 203.
    Felson, D.T., 2010. Arthroscopy as a treatment for knee osteoarthritis. Best Pract Res Cl Rh 24, 47-50.
    Felson, D.T., Nevitt, M.C., 2004. Epidemiologic studies for osteoarthritis:new versus conventional study design approaches. Rheum. Dis. Clin. North Am. 30, 783-797.
    Felson, D.T., Zhang, Y., 1998. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 41, 1343-1355.
    Feng, Y., Liu, S., Mo, Q., Liu, P., Xiao, X., Ma, H., 2023. Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs. Protein Cell 14, 304-308.
    Fernandes, J., Tardif, G., Martel-Pelletier, J., Lascau-Coman, V., Dupuis, M., Moldovan, F., Sheppard, M., Krishnan, B.R., Pelletier, J.P., 1999. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints:prevention of osteoarthritis progression. Am J. Pathol. 154, 1159-1169.
    Ferreira da Silva, J., Oliveira, G., Arasa-Verge, E., Moretton, A., Timelthaler, G., Jiricny, J., Loizou, J., 2021. Prime Editing Efficiency and Fidelity are Enhanced in the Absence of Mismatch Repair. bioRxiv, 2021.2009.2030.462548.
    Fidanza, A., Lopez-Yrigoyen, M., Romano, N., Jones, R., Taylor, A.H., Forrester, L.M., 2017. An all-in-one UniSam vector system for efficient gene activation. Sci. Rep. 7, 6394.
    Flannery, O., Smith, K., 2014. Osteolysis with secondary arthritis of the scaphotrapeziotrapezoid joint in Hajdu-Cheney syndrome:a case report. Hand Surg. 19, 117-118.
    Fransen, M., McConnell, S., Harmer, A.R., Van der Esch, M., Simic, M., Bennell, K.L., 2015. Exercise for osteoarthritis of the knee:a Cochrane systematic review. Br J. Sports Med. 49, 1554-1557.
    Fransen, M., McConnell, S., Hernandez-Molina, G., Reichenbach, S., 2014. Exercise for osteoarthritis of the hip. The Cochrane database of systematic reviews, CD007912.
    Fu, L., Hu, Y., Song, M., Liu, Z., Zhang, W., Yu, F.X., Wu, J., Wang, S., Izpisua Belmonte, J.C., Chan, P., et al., 2019a. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201.
    Fu, L., Hu, Y., Song, M., Liu, Z., Zhang, W., Yu, F.X., Wu, J., Wang, S., Izpisua, B.J.C., Chan, P., et al., 2019b. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201.
    Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., Sander, J.D., 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826.
    Fukui, N., Purple, C.R., Sandell, L.J., 2001. Cell biology of osteoarthritis:the chondrocyte's response to injury. Curr. Rheumatol Rep. 3, 496-505.
    Gao, L., Cox, D.B.T., Yan, W.X., Manteiga, J.C., Schneider, M.W., Yamano, T., Nishimasu, H., Nureki, O., Crosetto, N., Zhang, F., 2017. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnol. 35, 789-792.
    Gao, P., Lyu, Q., Ghanam, A.R., Lazzarotto, C.R., Newby, G.A., Zhang, W., Choi, M., Slivano, O.J., Holden, K., Walker, J.A., et al., 2021. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. 22, 83.
    Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W.H., Pan, B., Hu, Y.J., Hu, J.H., Thompson, D.B., Shu, Y., et al., 2018. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.Nature 553, 217-221.
    Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L., Liu, P., 2014. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155.
    Gao, Y., Xiong, X., Wong, S., Charles, E.J., Lim, W.A., Qi, L.S., 2016. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043-1049.
    Gao, Z., Ravendran, S., Mikkelsen, N.S., Haldrup, J., Cai, H., Ding, X., Paludan, S.R., Thomsen, M.K., Mikkelsen, J.G., Bak, R.O., 2022. A truncated reverse transcriptase enhances prime editing by split AAV vectors. Mol. Ther 30, 2942-2951.
    Garcia-Alvarez, F., Alegre-Aguaron, E., Desportes, P., Royo-Canas, M., Castiella, T., Larrad, L., Martinez-Lorenzo, M.J., 2011. Chondrogenic differentiation in femoral bone marrow-derived mesenchymal cells (MSC) from elderly patients suffering osteoarthritis or femoral fracture. Arch.
    Gerontol. Geriatr. 52, 239-242.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017.Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464- 471.
    Gaudelli, N.M., Lam, D.K., Rees, H.A., Sola-Esteves, N.M., Barrera, L.A., Born, D.A., Edwards, A., Gehrke, J.M., Lee, S.J., Liquori, A.J., et al., 2020. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892-900.
    Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977-982.
    Geiger, B.C., Wang, S., Padera, R.F., Jr., Grodzinsky, A.J., Hammond, P.T., 2018. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10, eaat8800.
    Gelse, K., Jiang, Q.J., Aigner, T., Ritter, T., Wagner, K., Poschl, E., von der Mark, K., Schneider, H., 2001. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer. Arthritis Rheum. 44, 1943- 1953.
    Gemberling, M.P., Siklenka, K., Rodriguez, E., Tonn-Eisinger, K.R., Barrera, A., Liu, F., Kantor, A., Li, L., Cigliola, V., Hazlett, M.F.,et al., 2021. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965-974.
    Gigout, A., Guehring, H., Froemel, D., Meurer, A., Ladel, C., Reker, D., Bay-Jensen, A.C., Karsdal, M.A., Lindemann, S., 2017. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthritis Cartilage 25, 1858-1867.
    Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al., 2014. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 159, 647-661.
    Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al., 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451.
    Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O'Connell, D., Walsh, K.R., Wood, K., et al., 2021. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis.N. Engl. J. Med. 385, 493-502.
    Goel, K., Ploski, J.E., 2022. RISC-y Business:Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Front Mol. Neurosci. 15, 914430.
    Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., et al., 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438-442.
    Grotle, M., Hagen, K.B., Natvig, B., Dahl, F.A., Kvien, T.K., 2008a. Obesity and osteoarthritis in knee, hip and/or hand:an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord. 9, 132.
    Grotle, M., Hagen, K.B., Natvig, B., Dahl, F.A., Kvien, T.K., 2008b. Prevalence and burden of osteoarthritis:results from a population survey in Norway. J. Rheumatol. 35, 677-684.
    Grunewald, J., Zhou, R., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., Joung, J.K., 2019a.Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433-437.Grunewald, J., Zhou, R.H., Iyer, S., Lareau, C.A., Garcia, S.P., Aryee, M.J., Joung, J.K., 2019b. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041- 1048.
    Guilak, F., Pferdehirt, L., Ross, A.K., Choi, Y.R., Collins, K., Nims, R.J., Katz, D.B., Klimak, M., Tabbaa, S., Pham, C.T.N., 2019. Designer Stem Cells:Genome Engineering and the Next Generation of Cell-Based Therapies. J. Orthop Res. 37, 1287-1293.
    Gupta, S., Hawker, G.A., Laporte, A., Croxford, R., Coyte, P.C., 2005. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition.Rheumatology (Oxford) 44, 1531-1537.
    Ha, C.W., Noh, M.J., Choi, K.B., Lee, K.H., 2012. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients.Cytotherapy 14, 247-256.
    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
    Hajizadeh-Sikaroodi, S., Hosseini, A., Fallah, A., Estiri, H., Noormohammadi, Z., Salehi, M., Ghaderian, S.M., Akhavan Niaki, H., Soleimani, M., Kazemi, B., 2014. Lentiviral Mediating Genetic Engineered Mesenchymal Stem Cells for Releasing IL-27 as a Gene Therapy Approach for Autoimmune Diseases.Cell 16, 255-262.
    Haldeman, J.M., Conway, A.E., Arlotto, M.E., Slentz, D.H., Muoio, D.M., Becker, T.C., Newgard, C.B., 2019. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic acids Res. 47, e23.
    Hale, C.R., Majumdar, S., Elmore, J., Pfister, N., Compton, M., Olson, S., Resch, A.M., Glover, C.V.R., Graveley, B.R., Terns, R.M., et al., 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45, 292-302.
    Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., Terns, R.M., Terns, M.P., 2009.RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956.
    Hamerman, D., 1989. The biology of osteoarthritis. N. Engl. J. Med. 320, 1322-1330.
    Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., Cofsky, J.C., Kyrpides, N.C., Banfield, J.F., Doudna, J.A., 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839-842.
    Harris, E.C., Coggon, D., 2015. HIP osteoarthritis and work. Best Pract. Res. Clin. Rheumatol. 29, 462- 482.
    He, B., Jiang, D., 2020. HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol. Int. 44, 524-535.
    He, L., He, T., Xing, J., Zhou, Q., Fan, L., Liu, C., Chen, Y., Wu, D., Tian, Z., Liu, B., et al., 2020. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res. Ther. 11, 276.
    Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E., Gersbach, C.A., 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510-517.
    Hirano, S., Nishimasu, H., Ishitani, R., Nureki, O., 2016. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol. Cell 61, 886-894.
    Holmes, M.W., Bayliss, M.T., Muir, H., 1988. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem. J. 250, 435-441.
    Holmgaard, A., Askou, A.L., Benckendorff, J.N.E., Thomsen, E.A., Cai, Y., Bek, T., Mikkelsen, J.G., Corydon, T.J., 2017. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. Mol. Ther. Nucleic Acids 9, 89-99.
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al., 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832.
    Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C.M., Gao, X., Rees, H.A., Lin, Z., et al., 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63.
    Hu, S., Du, J., Chen, N., Jia, R., Zhang, J., Liu, X., Yang, L., 2020. In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa. Invest. Ophthalmol. Vis. Sci. 61, 31.
    Huang, C.J., Adler, B.A., Doudna, J.A., 2022. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol. Cell 82, 2148-2160.
    Huang, T.P., Zhao, K.T., Miller, S.M., Gaudelli, N.M., Oakes, B.L., Fellmann, C., Savage, D.F., Liu, D.R., 2019. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.Nat. Biotechnol. 37, 626-631.
    Huang, Y., Askew, E.B., Knudson, C.B., Knudson, W., 2016. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention.Matrix Biol. 56, 74-94.
    Huang, Y.H., Su, J., Lei, Y., Brunetti, L., Gundry, M.C., Zhang, X., Jeong, M., Li, W., Goodell, M.A., 2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 18, 176.
    Hunter, D.J., Bierma-Zeinstra, S., 2019. Osteoarthritis. Lancet 393, 1745-1759.
    Hunter, D.J., McDougall, J.J., Keefe, F.J., 2009. The symptoms of osteoarthritis and the genesis of pain.Med. Clin. North Am. 93, 83-100.
    Hunter, D.J., Schofield, D., Callander, E., 2014. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 10, 437-441.
    Huynh, N.P., Gloss, C.C., Lorentz, J., Tang, R., Brunger, J.M., McAlinden, A., Zhang, B., Guilak, F., 2020. Long non-coding RNA GRASLND enhances chondrogenesis via suppression of the interferon type II signaling pathway. eLife 9.
    Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al., 2018. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.Nat. Med. 24, 939-946.
    Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.
    Iwamoto, M., Ohta, Y., Larmour, C., Enomoto-Iwamoto, M., 2013. Toward regeneration of articular cartilage. Birth Defects Res. C Embryo Today 99, 192-202.
    Jang, H., Shin, J.H., Jo, D.H., Seo, J.H., Yu, G., Gopalappa, R., Cho, S.-R., Kim, J.H., Kim, H.H., 2021.Prime editing enables precise genome editing in mouse liver and retina. bioRxiv, 2021.2001.2008.425835.
    Jansen, R., Embden, J.D., Gaastra, W., Schouls, L.M., 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565-1575.
    Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., 2018. Review on nanoparticles and nanostructured materials:history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050-1074.
    Jeon, O.H., Kim, C., Laberge, R.M., Demaria, M., Rathod, S., Vasserot, A.P., Chung, J.W., Kim, D.H., Poon, Y., David, N., et al., 2017. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775-781.
    Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251.
    Jiang, C., Mei, M., Li, B., Zhu, X., Zu, W., Tian, Y., Wang, Q., Guo, Y., Dong, Y., Tan, X., 2017. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440-443.
    Jiang, T., Zhang, X.-O., Weng, Z., Xue, W., 2021. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227-234.
    Jin, S., Fei, H., Zhu, Z., Luo, Y., Liu, J., Gao, S., Zhang, F., Chen, Y.H., Wang, Y., Gao, C., 2020.Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Mol. Cell 79, 728- 740.
    Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al., 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., Doudna, J., 2013. RNA-programmed genome editing in human cells. eLife 2, e00471.
    Johnson, K., Terkeltaub, R., 2004. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess.Osteoarthritis Cartilage 12, 321-335.
    Josipovic, G., Tadic, V., Klasic, M., Zanki, V., Beceheli, I., Chung, F., Ghantous, A., Keser, T., Madunic, J., Boskovic, M., et al., 2019a. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res. 47, 9637-9657.
    Josipovic, G., Zoldos, V., Vojta, A., 2019b. Active fusions of Cas9 orthologs. J. Biotechnol. 301, 18-23.
    Kannan, S., Altae-Tran, H., Jin, X., Madigan, V.J., Oshiro, R., Makarova, K.S., Koonin, E.V., Zhang, F., 2022. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194-197.
    Kantor, A., McClements, M.E., MacLaren, R.E., 2020. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.Int. J. Mol. Sci. 21, 6240.
    Karlsen, A.T., Pernas, F.P., Staerk, J., Caglayan, S., Brinchmann, E.J., 2016. Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing. Osteoarthritis Cartilage 24(Supplement 1), S325.
    Karvelis, T., Gasiunas, G., Siksnys, V., 2013. Programmable DNA cleavage in vitro by Cas9. Biochem.Soc. Trans. 41, 1401-1406.
    Kaul, G., Cucchiarini, M., Arntzen, D., Zurakowski, D., Menger, M.D., Kohn, D., Trippel, S.B., Madry, H., 2006. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J. Gene Med. 8, 100-111.
    Kay, J.D., Gouze, E., Oligino, T.J., Gouze, J.N., Watson, R.S., Levings, P.P., Bush, M.L., Dacanay, A., Nickerson, D.M., Robbins, P.D., et al., 2009. Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J. Gene Med.11, 605-614.
    Kearns, N.A., Pham, H., Tabak, B., Genga, R.M., Silverstein, N.J., Garber, M., Maehr, R., 2015.Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401-403.
    Kellner, M.J., Koob, J.G., Gootenberg, J.S., Abudayyeh, O.O., Zhang, F., 2019. SHERLOCK:nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986-3012.
    Kemaladewi, D.U., Bassi, P.S., Erwood, S., Al-Basha, D., Gawlik, K.I., Lindsay, K., Hyatt, E., Kember, R., Place, K.M., Marks, R.M., et al., 2019. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125-130.
    Khodavirdipour, A., Piri, M., Jabbari, S., Khalaj-Kondori, M., 2021. Potential of CRISPR/Cas13 System in Treatment and Diagnosis of COVID-19. Glob Med. Genet. 8, 7-10.
    Kim, D., Chung, Y.H., Lee, Y.J., Jeong, D., Park, K.H., Chin, H.J., Lee, J.M., Park, S., Ko, S.M., Ko, J.H., et al., 2023. Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nat. Chem. Biol. 19. 389.
    Kim, D., Kim, D.E., Lee, G., Cho, S.I., Kim, J.S., 2019. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430-435.
    Kim, D.Y., Lee, J.M., Moon, S.B., Chin, H.J., Park, S., Lim, Y., Kim, D., Koo, T., Ko, J.H., Kim, Y.S., 2021. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol, 40, 94-102.
    Kim, E., Koo, T., Park, S.W., Kim, D., Kim, K., Cho, H.Y., Song, D.W., Lee, K.J., Jung, M.H., Kim, S., et al., 2017. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni.Nat. Commun. 8, 14500.
    Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198-206.
    Kim, J.H., Kim, H.J., Lee, D.H., 2017. Survival of opening versus closing wedge high tibial osteotomy:A meta-analysis. Sci. Rep. 7, 7296.
    Kim, J.H., Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y., Do, H.J., Lim, H.Y., Kim, J.M., Park, K.H., 2011. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32, 268-278.
    Kim, J.M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J.C., Ulmer, T.S., An, W., 2015. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 43, 8868-8883.
    Kim, S., Bae, T., Hwang, J., Kim, J.S., 2017. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5 ' nucleotides. Genome Biol. 18.
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat.Biotechnol. 35, 371-376.
    Klein, J.C., Keith, A., Rice, S.J., Shepherd, C., Agarwal, V., Loughlin, J., Shendure, J., 2019. Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nat. Commun. 10, 2434.
    Kleinjan, D.A., Wardrope, C., Sou, S.N., Rosser, S.J., 2017. Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat. Commun. 8.
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., 2016.High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495.
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485.
    Kleinstiver, B.P., Sousa, A.A., Walton, R.T., Tak, Y.E., Hsu, J.Y., Clement, K., Welch, M.M., Horng, J.E., Malagon-Lopez, J., Scarfo, I., et al., 2019. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276-282.
    Knott, G.J., East-Seletsky, A., Cofsky, J.C., Holton, J.M., Charles, E., O'Connell, M.R., Doudna, J.A., 2017. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat. Struct.Mol. Biol. 24, 825-833.
    Ko, J.Y., Lee, J., Ryu, Y.H., Im, G.I., 2019. SOX-6, 9-Transfected Adipose Stem Cells to Treat Surgically-Induced Osteoarthritis in Goats. Tissue Eng. Part A. 25, 990-1000.
    Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., et al., 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588.
    Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N., Hsu, P.D., 2018. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173, 665-676.
    Kong, X., Zhang, H., Li, G., Wang, Z., Kong, X., Wang, L., Xue, M., Zhang, W., Wang, Y., Lin, J., et al., 2023. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14, 2046.
    Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
    Kreitz, J., Friedrich, M.J., Guru, A., Lash, B., Saito, M., Macrae, R.K., Zhang, F., 2023. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357-364.
    Kumar, N., Stanford, W., de Solis, C., Aradhana, Abraham, N.D., Dao, T.J., Thaseen, S., Sairavi, A., Gonzalez, C.U., Ploski, J.E., 2018. The Development of an AAV-Based CRISPR SaCas9 Genome Editing System That Can Be Delivered to Neurons in vivo and Regulated via Doxycycline and Cre-Recombinase.Front. Mol. Neurosci. 11, 413.
    Kuscu, C., Mammadov, R., Czikora, A., Unlu, H., Tufan, T., Fischer, N.L., Arslan, S., Bekiranov, S., Kanemaki, M., Adli, M., 2019. Temporal and spatial epigenome editing allows precise gene Regulation in mammalian cells. J. Mol. Biol. 431, 111-121.
    Kushawah, G., Hernandez-Huertas, L., Abugattas-Nunez Del Prado, J., Martinez-Morales, J.R., DeVore, M.L., Hassan, H., Moreno-Sanchez, I., Tomas-Gallardo, L., Diaz-Moscoso, A., Monges, D.E., et al., 2020. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. cell 54, 805-817.
    Kweon, J., Hwang, H.Y., Ryu, H., Jang, A.H., Kim, D., Kim, Y., 2023. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol. Ther. 31, 249-259.
    Kwon, D.Y., Zhao, Y.T., Lamonica, J.M., Zhou, Z., 2017. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 8,15315.
    Lambert, L.J., Challa, A.K., Niu, A., Zhou, L., Tucholski, J., Johnson, M.S., Nagy, T.R., Eberhardt, A.W., Estep, P.N., Kesterson, R.A., et al., 2016. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis. Model Mech. 9, 1169-1179.
    Lamo-Espinosa, J.M., Mora, G., Blanco, J.F., Granero-Molto, F., Nunez-Cordoba, J.M., Sanchez-Echenique, C., Bondia, J.M., Aquerreta, J.D., Andreu, E.J., Ornilla, E., et al., 2016. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis:multicenter randomized controlled clinical trial (phase I/II).J. Transl. Med. 16, 213.
    Lane, N.E., Oehlert, J.W., Bloch, D.A., Fries, J.F., 1998. The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine:a 9 year longitudinal study. J. Rheumatol. 25, 334-341.
    Laroui, H., Grossin, L., Leonard, M., Stoltz, J.F., Gillet, P., Netter, P., Dellacherie, E., 2007. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 8, 3879-3885.
    Latella, M.C., Di Salvo, M.T., Cocchiarella, F., Benati, D., Grisendi, G., Comitato, A., Marigo, V., Recchia, A., 2016. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Mol. Ther. Nucleic Acids 5, e389.
    Lee, A.S., Ellman, M.B., Yan, D., Kroin, J.S., Cole, B.J., van Wijnen, A.J., Im, H.J., 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527, 440-447.
    Lee, S., Ding, N., Sun, Y., Yuan, T., Li, J., Yuan, Q., Liu, L., Yang, J., Wang, Q., Kolomeisky, A.B., et al., 2020. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773.
    Lefebvre, V., Dvir-Ginzberg, M., 2017. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res. 58, 2-14.
    Lei, Y., Zhang, X.T., Su, J.Z., Jeong, M., Gundry, M.C., Huang, Y.H., Zhou, Y.B., Li, W., Goodell, M.A., 2017. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat. Commun. 8, 16026.
    Leibowitz, M.L., Papathanasiou, S., Doerfler, P.A., Blaine, L.J., Sun, L., Yao, Y., Zhang, C.Z., Weiss, M.J., Pellman, D., 2021. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.Nat. Genet. 53, 895-905.
    Levy, J.M., Yeh, W.H., Pendse, N., Davis, J.R., Hennessey, E., Butcher, R., Koblan, L.W., Comander, J., Liu, Q., Liu, D.R., 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97-110.
    Li, C., Cao, Y., Zhang, L., Li, J., Wang, J., Zhou, Y., Wei, H., Guo, M., Liu, L., Liu, C., et al., 2021.CRISPR-CasRx Targeting LncRNA LINC00341 Inhibits Tumor Cell Growth in vitro and in vivo. Front.Mol. Biosci. 8, 638995.
    Li, G., Wang, Y., Li, X., Wang, Y., Huang, X., Gao, J., Hu, X., 2021. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun. Signal. 19, 84.
    Li, J., Mahata, B., Escobar, M., Goell, J., Wang, K., Khemka, P., Hilton, I.B., 2021a. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896.
    Li, J., Shen, Z., Liu, Y., Yan, Z., Liu, Y., Lin, X., Tang, J., Lv, R., Geng, G., Xiong, Z.Q., et al., 2023. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol. Ther. 31, 2286-2295.
    Li, J., Xu, R., Qin, R., Liu, X., Kong, F., Wei, P., 2021b. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 14, 352-360.
    Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., Wu, X., 2020.Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Bio. 18, e3000749.Li, X., Ellman, M.B., Kroin, J.S., Chen, D., Yan, D., Mikecz, K., Ranjan, K.C., Xiao, G., Stein, G.S., Kim, S.G., et al., 2012. Species-specific biological effects of FGF-2 in articular cartilage:implication for distinct roles within the FGF receptor family. J. Cell Biochem. 113, 2532-2542.
    Li, X., Wang, X., Sun, W., Huang, S., Zhong, M., Yao, Y., Ji, Q., Huang, X., 2022a. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell Biol. 14, mjac022.
    Li, X., Xie, C., Xiao, F., Su, H., Li, Z., Weng, J., Huang, Y., He, P., 2022b. Circular RNA circ_0000423 regulates cartilage ECM synthesis via circ_0000423/miRNA-27b-3p/MMP-13 axis in osteoarthritis.Aging 14, 3400-3415.
    Li, X., Zhou, L., Gao, B.Q., Li, G., Wang, X., Wang, Y., Wei, J., Han, W., Wang, Z., Li, J., et al., 2022c.Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure.Nat. Commun. 13, 1669.
    Li, Y., Chen, J., Tsai, S.Q., Cheng, Y., 2021. Easy-Prime:a machine learning-based prime editor design tool. Genome Biol. 22, 235.
    Li, Y., Wang, Y., Chubinskaya, S., Schoeberl, B., Florine, E., Kopesky, P., Grodzinsky, A.J., 2015. Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage:relevance to post-traumatic osteoarthritis. Osteoarthritis Cartilage 23, 266-274.
    Li, Z., Yuan, B., Pei, Z., Zhang, K., Ding, Z., Zhu, S., Wang, Y., Guan, Z., Cao, Y., 2019. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol. Med. 23, 6554-6564.
    Liang, B., Mamidi, M.K., Samsa, W.E., Chen, Y., Lee, B., Zheng, Q., Zhou, G., 2020. Targeted and sustained Sox9 expression in mouse hypertrophic chondrocytes causes severe and spontaneous osteoarthritis by perturbing cartilage homeostasis. Am J. Transl. Res. 12, 1056-1069.
    Liao, H.K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M.Z., Sui, Y., Yamauchi, T., Sakurai, M., O'Keefe, D.D., Nunez-Delicado, E., et al., 2017. In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell 171, 1495-1507.
    Liddle, A.D., Pegg, E.C., Pandit, H., 2013. Knee replacement for osteoarthritis. Maturitas 75, 131-136.
    Lim, C.K.W., Gapinske, M., Brooks, A.K., Woods, W.S., Powell, J.E., Zeballos, C.M., Winter, J., Perez-Pinera, P., Gaj, T., 2020. Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol. Ther. 28, 1177-1189.
    Lin, L., Liu, Y., Xu, F., Huang, J., Daugaard, T.F., Petersen, T.S., Hansen, B., Ye, L., Zhou, Q., Fang, F., et al., 2018. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7, 1-19.
    Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
    Lin, Q.P., Jin, S., Zong, Y., Yu, H., Zhu, Z.X., Liu, G.W., Kou, L.Q., Wang, Y.P., Qiu, J.L., Li, J.Y., et al., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923-927.
    Liu, J., Chen, Y., Nong, B., Luo, X., Cui, K., Tan, W., Yang, Y., Ma, W., Liang, P., Songyang, Z., 2023. CRISPR-assisted transcription activation by phase separation proteins. Protein Cell, doi: 10.1093/procel/pwad013.
    Liu, J.J., Orlova, N., Oakes, B.L., Ma, E., Spinner, H.B., Baney, K.L.M., Chuck, J., Tan, D., Knott, G.J., Harrington, L.B., et al., 2019. Author Correction:CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 568, E8-E10.
    Liu, L., Li, X., Wang, J., Wang, M., Chen, P., Yin, M., Li, J., Sheng, G., Wang, Y., 2017. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134.
    Liu, P., Liang, S.Q., Zheng, C., Mintzer, E., Zhao, Y.G., Ponnienselvan, K., Mir, A., Sontheimer, E.J., Gao, G., Flotte, T.R., et al., 2021. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121.
    Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D., Young, R.A., Jaenisch, R., 2016. Editing DNA Methylation in the Mammalian Genome. Cell 167, 233-247.
    Liu, X.S., Wu, H., Krzisch, M., Wu, X., Graef, J., Muffat, J., Hnisz, D., Li, C.H., Yuan, B., Xu, C., et al., 2018. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell 172, 979-992.
    Liu, Y., Li, X., He, S., Huang, S., Li, C., Chen, Y., Liu, Z., Huang, X., Wang, X., 2020. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27.
    Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., Lin, F., 2018a. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 17, 2411-2422.
    Liu, Y., Yang, G., Huang, S.H., Li, X.Y., Wang, X., Li, G.L., Chi, T., Chen, Y.L., Huang, X.X., Wang, X.L., 2021. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134-1136.
    Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., Lin, F., 2018b. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem. J. 475, 3629-3638.
    Loughlin, J., 2005. The genetic epidemiology of human primary osteoarthritis:current status. Expert Rev.Mol. Med. 7, 1-12.
    Lu, C.H., Yeh, T.S., Yeh, C.L., Fang, Y.H., Sung, L.Y., Lin, S.Y., Yen, T.C., Chang, Y.H., Hu, Y.C., 2014.Regenerating cartilages by engineered ASCs:prolonged TGF-beta3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol. Ther. 22, 186-195.
    Lu, H., Dai, Y., Lv, L., Zhao, H., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE 9, e84703.
    Lu, H., Lv, L., Dai, Y., Wu, G., Zhao, H., Zhang, F., 2013. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE 8, e69950.
    Lu, J., Zhao, C., Zhao, Y., Zhang, J., Zhang, Y., Chen, L., Han, Q., Ying, Y., Peng, S., Ai, R., et al., 2018.Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing.Nucleic Acids Res. 46, e25.
    Luo, W., Morrison, H., de Groh, M., Waters, C., DesMeules, M., Jones-McLean, E., Ugnat, A.M., Desjardins, S., Lim, M., Mao, Y., 2007. The burden of adult obesity in Canada. Chronic Dis. Can. 27, 135-144.
    Ma, D., Peng, S., Huang, W., Cai, Z., Xie, Z., 2018. Rational Design of Mini-Cas9 for Transcriptional Activation. ACS Synth. Biol. 7, 978-985.
    Ma, D.C., Peng, S.G., Xie, Z., 2016. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat. Commun. 7, 13056.
    Ma, S., Liao, K., Li, M., Wang, X., Lv, J., Zhang, X., Huang, H., Li, L., Huang, T., Guo, X.,et al., 2023.Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice.Nucleic Acids Res. 51, 5271-5284.
    Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M.D., Kohn, D., Trippel, S.B., 2005. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12, 1171-1179.
    Mahas, A., Wang, Q., Marsic, T., Mahfouz, M.M., 2021. A Novel Miniature CRISPR-Cas13 System for SARS-CoV-2 Diagnostics. ACS Synth. Biol, ACS Synth. Biol.. 2541-2551.
    Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al., 2020. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67-83.
    Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., Church, G.M., 2013a. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838.
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013b.RNA-guided human genome engineering via Cas9. Science 339, 823-826.
    Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., Liao, W., Kang, Y., 2018. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther. 9, 247.
    Martinez-Redondo, P., Guillen-Guillen, I., Davidsohn, N., Wang, C., Prieto, J., Kurita, M., Hatanaka, F., Zhong, C., Hernandez-Benitez, R., Hishida, T., et al., 2020. alphaKLOTHO and sTGFbetaR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein cell 11, 219-226.
    Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., Hardin, A., Eckalbar, W.L., Vaisse, C., Ahituv, N., 2019. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363,.eaau0629.
    McAlindon, T., Felson, D.T., 1997. Nutrition:risk factors for osteoarthritis. Ann. Rheum. Dis. 56, 397- 400.
    McAuley, G.E., Yiu, G., Chang, P.C., Newby, G.A., Campo-Fernandez, B., Fitz-Gibbon, S.T., Wu, X., Kang, S.L., Garibay, A., Butler, J., et al., 2023. Human T cell generation is restored in CD3delta severe combined immunodeficiency through adenine base editing. Cell 186, 1398-1416.
    McDonald, J.I., Celik, H., Rois, L.E., Fishberger, G., Fowler, T., Rees, R., Kramer, A., Martens, A., Edwards, J.R., Challen, G.A., 2016. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open 5, 866-874.
    McKinley, K.L., Cheeseman, I.M., 2017. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Dev. cell 40, 405-420.
    Mendenhall, E.M., Williamson, K.E., Reyon, D., Zou, J.Y., Ram, O., Joung, J.K., Bernstein, B.E., 2013.Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133- 1136.
    Mesallati, T., Buckley, C.T., Kelly, D.J., 2014. A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes.Tissue Eng. Part C Methods 20, 52-63.
    Mi, Z., Ghivizzani, S.C., Lechman, E., Glorioso, J.C., Evans, C.H., Robbins, P.D., 2003. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees.Arthritis Res. Ther. 5, R132-R139.
    Mi, Z., Ghivizzani, S.C., Lechman, E.R., Jaffurs, D., Glorioso, J.C., Evans, C.H., Robbins, P.D., 2000.Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum. 43, 2563-2570.
    Miller, S.M., Wang, T., Randolph, P.B., Arbab, M., Shen, M.W., Huang, T.P., Matuszek, Z., Newby, G.A., Rees, H.A., Liu, D.R., 2020. Continuous evolution of SpCas9 variants compatible with non-G PAMs.Nat. Biotechnol. 38, 471-481.Mistry, H., Connock, M., Pink, J., Shyangdan, D., Clar, C., Royle, P., Court, R., Biant, L.C., Metcalfe, A., Waugh, N., 2017. Autologous chondrocyte implantation in the knee:systematic review and economic evaluation. Health Technol. Assess 21, 1-294.
    Miyamoto, Y., Mabuchi, A., Shi, D., Kubo, T., Takatori, Y., Saito, S., Fujioka, M., Sudo, A., Uchida, A., Yamamoto, S., et al., 2007. A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet.39, 529-533.
    Mobasheri, A., 2020. Future Cell and Gene Therapy for Osteoarthritis (OA):Potential for Using Mammalian Protein Production Platforms, Irradiated and Transfected Protein Packaging Cell Lines for Over-Production of Therapeutic Proteins and Growth Factors. Adv. Exp. Med. Biol.1247, 17-31.
    Mochizuki, Y., Chiba, T., Kataoka, K., Yamashita, S., Sato, T., Kato, T., Takahashi, K., Miyamoto, T., Kitazawa, M., Hatta, T., et al., 2018. Combinatorial CRISPR/Cas9 Approach to Elucidate a Far-Upstream Enhancer Complex for Tissue-Specific Sox9 Expression. Dev. cell 46, 794-806.
    Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Soria, E., 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174-182.
    Mojica, F.J., Diez-Villasenor, C., Soria, E., Juez, G., 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244-246.
    Molnar, V., Matisic, V., Kodvanj, I., Bjelica, R., Jelec, Z., Hudetz, D., Rod, E., Cukelj, F., Vrdoljak, T., Vidovic, D., et al., 2021. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol.Sci. 22, 9208.
    Moreno, A.M., Fu, X., Zhu, J., Katrekar, D., Shih, Y.V., Marlett, J., Cabotaje, J., Tat, J., Naughton, J., Lisowski, L., et al., 2018. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Mol. Ther. 26, 1818-1827.
    Morita, S., Horii, T., Kimura, M., Hatada, I., 2020. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform. Int. J. Mol. Sci.21, 1574.
    Morita, S., Noguchi, H., Horii, T., Nakabayashi, K., Kimura, M., Okamura, K., Sakai, A., Nakashitna, H., Hata, K., Nakashima, K., et al., 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060-1065.
    Morscheid, Y.P., Venkatesan, J.K., Schmitt, G., Orth, P., Zurakowski, D., Speicher-Mentges, S., Menger, M.D., Laschke, M.W., Cucchiarini, M., Madry, H., 2021. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am.J. Sports Med. 49, 958-969.
    Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., Kellner, M.J., Tan, A.L., Paul, L.M., Parham, L.A., et al., 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444-448.
    Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al., 2021. Engineered pegRNAs improve prime editing efficiency. Nat.Biotechnol. 40, 402-410.
    Neugebauer, M.E., Hsu, A., Arbab, M., Krasnow, N.A., McElroy, A.N., Pandey, S., Doman, J.L., Huang, T.P., Raguram, A., Banskota, S., et al., 2023. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol.41, 673-685.
    Ng, C.K., Handley, C.J., Preston, B.N., Robinson, H.C., 1992. The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage explants. Arch. Biochem. Biophys. 298, 70-79.
    Nguyen, H., Wilson, H., Jayakumar, S., Kulkarni, V., Kulkarni, S., 2021. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Viruses 13, 1850.
    Nishida, Y., D'Souza, A.L., Thonar, E.J., Knudson, W., 2000. Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheum. 43, 1315-1326.
    Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al., 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262.
    Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et al., 2014.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836-843.
    Nunez, J.K., Chen, J., Pommier, G.C., Cogan, J.Z., Replogle, J.M., Adriaens, C., Ramadoss, G.N., Shi, Q., Hung, K.L., Samelson, A.J., et al., 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503-2519.
    O'Geen, H., Bates, S.L., Carter, S.S., Nisson, K.A., Halmai, J., Fink, K.D., Rhie, S.K., Farnham, P.J., Segal, D.J., 2019. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26.
    O'Geen, H., Ren, C., Nicolet, C.M., Perez, A.A., Halmai, J., Le, V.M., Mackay, J.P., Farnham, P.J., Segal, D.J., 2017. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901-9916.
    Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., Nakatani, Y., 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959.
    Oka, M., Rodic, N., Graddy, J., Chang, L.J., Terada, N., 2006. CpG sites preferentially methylated by Dnmt3a in vivo. J. Biol. Chem. 281, 9901-9908.
    Orth, P., Kaul, G., Cucchiarini, M., Zurakowski, D., Menger, M.D., Kohn, D., Madry, H., 2011.Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg. Sports Traumatol. Arthrosc. 19, 2119-2130.
    Ozcan, A., Krajeski, R., Ioannidi, E., Lee, B., Gardner, A., Makarova, K.S., Koonin, E.V., Abudayyeh, O.O., Gootenberg, J.S., 2021. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720-725.
    Panoutsopoulou, K., Southam, L., Elliott, K.S., Wrayner, N., Zhai, G., Beazley, C., Thorleifsson, G., Arden, N.K., Carr, A., Chapman, K., et al., 2011. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann. Rheum. Dis. 70, 864-867.
    Park, S.J., Jeong, T.Y., Shin, S.K., Yoon, D.E., Lim, S.Y., Kim, S.P., Choi, J., Lee, H., Hong, J.I., Ahn, J., et al., 2021. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170.
    Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C.A., Li, Z., Cress, B.F., Knott, G.J., Jacobsen, S.E., Banfield, J.F., Doudna, J.A., 2020. CRISPR-CasPhi from huge phages is a hypercompact genome editor. Science 369, 333-337.
    Pelletier, J.P., Caron, J.P., Evans, C., Robbins, P.D., Georgescu, H.I., Jovanovic, D., Fernandes, J.C., Martel-Pelletier, J., 1997. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum. 40, 1012-1019.
    Pereira, D., Ramos, E., Branco, J., 2015. Osteoarthritis. Acta. Med. Port. 28, 99-106.
    Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al., 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973-976.
    Pflueger, C., Tan, D., Swain, T., Nguyen, T., Pflueger, J., Nefzger, C., Polo, J.M., Ford, E., Lister, R., 2018. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 28, 1193-1206.
    Pickar-Oliver, A., Black, J.B., Lewis, M.M., Mutchnick, K.J., Klann, T.S., Gilcrest, K.A., Sitton, M.J., Nelson, C.E., Barrera, A., Bartelt, L.C., et al., 2019. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells. Nat. Biotechnol. 37, 1493-1501.
    Polstein, L.R., Gersbach, C.A., 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198-200.
    Poole, A.R., 1999. An introduction to the pathophysiology of osteoarthritis. Front. Biosci. 4, D662-D670.
    Pourcel, C., Salvignol, G., Vergnaud, G., 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies.Microbiology 151, 653-663.
    Prieto-Alhambra, D., Judge, A., Javaid, M.K., Cooper, C., Diez-Perez, A., Arden, N.K., 2014. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis:influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 73, 1659-1664.
    Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., 2013.
    Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression.Cell 152, 1173-1183.
    Qian, J., Guan, X., Xie, B., Xu, C., Niu, J., Tang, X., Li, C.H., Colecraft, H.M., Jaenisch, R., Liu, X.S., 2023. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666.
    Qin, H., Wang, C., He, Y., Lu, A., Li, T., Zhang, B., Shen, J., 2023a. Silencing miR-146a-5p Protects against Injury-Induced Osteoarthritis in Mice. Biomolecules 13, 123.
    Qin, H., Zhang, W., Zhang, S., Feng, Y., Xu, W., Qi, J., Zhang, Q., Xu, C., Liu, S., Zhang, J., et al., 2023b.Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J. Exp. Med. 220, e20220776.
    Quenneville, S., Turelli, P., Bojkowska, K., Raclot, C., Offner, S., Kapopoulou, A., Trono, D., 2012. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766-773.
    Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., et al., 2015a. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
    Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X.B., Makarova, K.S., et al., 2015b. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, U186-U198.
    Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al., 2013a. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013b. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
    Rees, H.A., Komor, A.C., Yeh, W.H., Caetano-Lopes, J., Warman, M., Edge, A.S.B., Liu, D.R., 2017.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790.
    Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., 2019. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717.
    Ren, J., Meng, X., Hu, F., Liu, Q., Cao, Y., Li, H., Yan, C., Li, J., Wang, K., Yu, H., et al., 2021. Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci. China Life Sci. 64, 1784-1787.
    Ren, X., Hu, B., Song, M., Ding, Z., Dang, Y., Liu, Z., Zhang, W., Ji, Q., Ren, R., Ding, J., et al., 2019a.Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643-3656.
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
    Ryu, S.M., Koo, T., Kim, K., Lim, K., Baek, G., Kim, S.T., Kim, H.S., Kim, D.E., Lee, H., Chung, E., et al., 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536-539.
    Safiri, S., Kolahi, A.A., Smith, E., Hill, C., Bettampadi, D., Mansournia, M.A., Hoy, D., Ashrafi-Asgarabad, A., Sepidarkish, M., Almasi-Hashiani, A., et al., 2020. Global, regional and national burden of osteoarthritis 1990-2017:a systematic analysis of the Global Burden of Disease Study 2017. Ann.Rheum. Dis. 79, 819-828.
    Sangree, A.K., Griffith, A.L., Szegletes, Z.M., Roy, P., DeWeirdt, P.C., Hegde, M., McGee, A.V., Hanna, R.E., Doench, J.G., 2022. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat. Commun. 13, 1318.
    Saunderson, E.A., Stepper, P., Gomm, J.J., Hoa, L., Morgan, A., Allen, M.D., Jones, J.L., Gribben, J.G., Jurkowski, T.P., Ficz, G., 2017. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun. 8, 1450.
    Schene, I.F., Joore, I.P., Oka, R., Mokry, M., van Vugt, A.H.M., van Boxtel, R., van der Doef, H.P.J., van der Laan, L.J.W., Verstegen, M.M.A., van Hasselt, P.M., et al., 2020. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352.
    Schmidt, M.B., Chen, E.H., Lynch, S.E., 2006. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage 14, 403- 412.
    Schneider, T., Welker, P., Haag, R., Dernedde, J., Hug, T., Licha, K., Kohl, B., Arens, S., Ertel, W., Schulze-Tanzil, G., 2015a. Effects of dendritic polyglycerol sulfate on articular chondrocytes. Inflamm.Res. 64, 917-928.
    Schneider, T., Welker, P., Licha, K., Haag, R., Schulze-Tanzil, G., 2015b. Influence of dendritic polyglycerol sulfates on knee osteoarthritis:an experimental study in the rat osteoarthritis model. BMC Musculoskelet Disord. 16, 387.
    Schofield, D.J., Shrestha, R.N., Percival, R., Passey, M.E., Callander, E.J., Kelly, S.J., 2013. The personal and national costs of lost labour force participation due to arthritis:an economic study. BMC Public Health 13, 188.
    Seidl, C.I., Fulga, T.A., Murphy, C.L., 2019. CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation.Osteoarthritis Cartilage 27, 140-147.
    Senis, E., Fatouros, C., Grosse, S., Wiedtke, E., Niopek, D., Mueller, A.K., Borner, K., Grimm, D., 2014.CRISPR/Cas9-mediated genome engineering:an adeno-associated viral (AAV) vector toolbox.Biotechnol. J. 9, 1402-1412.
    Seol, D., Choe, H.H., Zheng, H., Brouillette, M.J., Fredericks, D.C., Petersen, E.B., Song, I., Jaidev, L.R., Salem, A., Martin, J.A., 2021. Intra-Articular Adeno-Associated Virus-Mediated Proteoglycan 4 Gene Therapy for Preventing Post-Traumatic Osteoarthritis. Hum. Gene Ther. 33, 529-540.
    Sgro, A., Blancafort, P., 2020. Epigenome engineering:new technologies for precision medicine. Nucleic Acids Res. 48, 12453-12482.
    Shen, S., Wu, Y., Chen, J., Xie, Z., Huang, K., Wang, G., Yang, Y., Ni, W., Chen, Z., Shi, P., et al., 2019.CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene. Ann. Rheum.Dis. 78, 826-836.
    Shimo, T., Takebe, H., Okui, T., Kunisada, Y., Ibaragi, S., Obata, K., Kurio, N., Shamsoon, K., Fujii, S., Hosoya, A., et al., 2020. Expression and Role of IL-1beta Signaling in Chondrocytes Associated with Retinoid Signaling during Fracture Healing. Int. J. Mol. Sci. 21, 2365.
    Shin, H.J., Park, H., Shin, N., Kwon, H.H., Yin, Y., Hwang, J.A., Kim, S.I., Kim, S.R., Kim, S., Joo, Y., et al., 2020a. p47phox siRNA-Loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers. 12, 443.
    Shin, H.J., Park, H., Shin, N., Shin, J., Gwon, D.H., Kwon, H.H., Yin, Y., Hwang, J.A., Hong, J., Heo, J.Y., et al., 2020b. p66shc siRNA nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis. Int. J. Nanomedicine 15, 2379-2390.
    Shin, H.Y., Wang, C.C., Lee, H.K., Yoo, K.H., Zeng, X.K., Kuhns, T., Yang, C.M., Mohr, T., Liu, C.Y., Hennighausen, L., 2017. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 8, 15464.
    Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al., 2015. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 60, 385-397.
    Si, H.B., Zeng, Y., Liu, S.Y., Zhou, Z.K., Chen, Y.N., Cheng, J.Q., Lu, Y.R., Shen, B., 2017. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage 25, 1698-1707.
    Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J.L., Protheroe, J., Jordan, K.P., 2015.Current evidence on risk factors for knee osteoarthritis in older adults:a systematic review and meta-analysis. Osteoarthritis Cartilage 23, 507-515.
    Singsuksawat, E., Onnome, S., Posiri, P., Suphatrakul, A., Srisuk, N., Nantachokchawapan, R., Praneechit, H., Sae-Kow, C., Chidpratum, P., Sa-Ngiamsuntorn, K., et al., 2021. Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Molecular therapy. Mol. Ther. Methods Clin. Dev. 21, 729-740.
    Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88.
    Smargon, A.A., Cox, D.B., Pyzocha, N.K., Zheng, K., Slaymaker, I.M., Gootenberg, J.S., Abudayyeh, O.A., Essletzbichler, P., Shmakov, S., Makarova, K.S., et al., 2017. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol.Cell 65, 618-630.
    Song, C.Q., Jiang, T., Richter, M., Rhym, L.H., Koblan, L.W., Zafra, M.P., Schatoff, E.M., Doman, J.L., Cao, Y., Dow, L.E., et al., 2020. Adenine base editing in an adult mouse model of tyrosinaemia. Nat.Biomed. Eng..4, 125-130.
    Song, H., Park, K.H., 2020. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 67, 12-23.
    Song, M., Lim, J.M., Min, S., Oh, J.S., Kim, D.Y., Woo, J.S., Nishimasu, H., Cho, S.R., Yoon, S., Kim, H.H., 2021. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain.Nat. Commun.12, 5617.
    Sripathy, S.P., Stevens, J., Schultz, D.C., 2006. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell Biol. 26, 8623-8638.
    Standage-Beier, K., Tekel, S.J., Brafman, D.A., Wang, X., 2021. Prime Editing Guide RNA Design Automation Using PINE-CONE. ACS Synth. Biol. 10, 422-427.
    Stepper, P., Kungulovski, G., Jurkowska, R.Z., Chandra, T., Krueger, F., Reinhardt, R., Reik, W., Jeltsch, A., Jurkowski, T.P., 2017. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703-1713.
    Strezoska, Z., Dickerson, S.M., Maksimova, E., Chou, E., Gross, M.M., Hemphill, K., Hardcastle, T., Perkett, M., Stombaugh, J., Miller, G.W., et al., 2020. CRISPR-mediated transcriptional activation with synthetic guide RNA. J. Biotechnol. 319, 25-35.
    Suh, S., Choi, E.H., Leinonen, H., Foik, A.T., Newby, G.A., Yeh, W.H., Dong, Z., Kiser, P.D., Lyon, D.C., Liu, D.R., et al., 2021. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat. Biomed. Eng. 5, 169-178.
    Sun, A., Li, C.P., Chen, Z., Zhang, S., Li, D.Y., Yang, Y., Li, L.Q., Zhao, Y., Wang, K., Li, Z., et al., 2023.The compact Caspi (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation. Cell Res. 33, 229-244.
    Taghbalout, A., Du, M., Jillette, N., Rosikiewicz, W., Rath, A., Heinen, C.D., Li, S., Cheng, A.W., 2019.Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat. Commun. 10, 4296.
    Tak, Y.E., Horng, J.E., Perry, N.T., Schultz, H.T., Iyer, S., Yao, Q., Zou, L.S., Aryee, M.J., Pinello, L., Joung, J.K., 2021. Augmenting and directing long-range CRISPR-mediated activation in human cells.Nat. Methods 18, 1075-1081.
    Tak, Y.E., Kleinstiver, B.P., Nunez, J.K., Hsu, J.Y., Horng, J.E., Gong, J.Y., Weissman, J.S., Joung, J.K., 2017. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat.Methods 14, 1163-1166.
    Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., Vale, R.D., 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646.
    Tao, R., Wang, Y., Hu, Y., Jiao, Y., Zhou, L., Jiang, L., Li, L., He, X., Li, M., Yu, Y., et al., 2022a. WT-PE:Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct Target Ther. 7, 108.
    Tao, R., Wang, Y., Jiao, Y., Hu, Y., Li, L., Jiang, L., Zhou, L., Qu, J., Chen, Q., Yao, S., 2022b. Bi-PE:bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res. 50, 6423-6434.
    Tardif, G., Pelletier, J.P., Dupuis, M., Geng, C., Cloutier, J.M., Martel-Pelletier, J., 1999. Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells. Arthritis Rheum. 42, 1147-1158.
    Tarjan, D.R., Flavahan, W.A., Bernstein, B.E., 2019. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun.10, 4258.
    Tashkandi, M., Ali, F., Alsaqer, S., Alhousami, T., Cano, A., Martin, A., Salvador, F., Portillo, F., L, C.G., Goldring, M.B., et al., 2019. Lysyl Oxidase-Like 2 Protects against Progressive and Aging Related Knee Joint Osteoarthritis in Mice. Int. J. Mol. Sci. 20, 4798. te Boekhorst, B.C., Jensen, L.B., Colombo, S., Varkouhi, A.K., Schiffelers, R.M., Lammers, T., Storm, G., Nielsen, H.M., Strijkers, G.J., Foged, C., et al., 2012. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J.Control Release 161, 772-780
    Thakore, P.I., D'Ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K., Kabadi, A.M., Reddy, T.E., Crawford, G.E., Gersbach, C.A., 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149.
    Thakore, P.I., Kwon, J.B., Nelson, C.E., Rouse, D.C., Gemberling, M.P., Oliver, M.L., Gersbach, C.A., 2018. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat.Commun. 9, 1674.
    Thuronyi, B.W., Koblan, L.W., Levy, J.M., Yeh, W.H., Zheng, C., Newby, G.A., Wilson, C., Bhaumik, M., Shubina-Oleinik, O., Holt, J.R., et al., 2019. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070-1079.
    Tofino-Vian, M., Guillen, M.I., Perez Del Caz, M.D., Silvestre, A., Alcaraz, M.J., 2018. Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cell Physiol. Biochem. 47, 11-25.
    Tong, H., Huang, J., Xiao, Q., He, B., Dong, X., Liu, Y., Yang, X., Han, D., Wang, Z., Wang, X., et al., 2023a. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat.Biotechnol. 41, 108-119.
    Tong, H., Liu, N., Wei, Y., Zhou, Y., Li, Y., Wu, D., Jin, M., Cui, S., Li, H., Li, G., et al., 2023.Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl. Sci.Rev. 10, nwad143.
    Tong, H., Wang, X., Liu, Y., Liu, N., Li, Y., Luo, J., Ma, Q., Wu, D., Li, J., Xu, C., et al., 2023b.Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. Doi: 10.1038/s41587-022-01595-6.
    Trippel, S.B., 1995. Growth factor actions on articular cartilage. J. Rheumatol. Suppl. 43, 129-132.
    Trippel, S.B., Corvol, M.T., Dumontier, M.F., Rappaport, R., Hung, H.H., Mankin, H.J., 1989. Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatric Res. 25, 76-82.
    Truong, D.J.J., Kuhner, K., Kuhn, R., Werfel, S., Engelhardt, S., Wurst, W., Ortiz, O., 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450-6458.
    Tuan, R.S., Boland, G., Tuli, R., 2003. Adult mesenchymal stem cells and cell-based tissue engineering.Arthritis Res. Ther. 5, 32-45.
    Urrutia, R., 2003. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231.van de Laar, I.M., Oldenburg, R.A., Pals, G., Roos-Hesselink, J.W., de Graaf, B.M., Verhagen, J.M., Hoedemaekers, Y.M., Willemsen, R., Severijnen, L.A., Venselaar, H., et al., 2011. Mutations in SMAD3cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121-126.
    van der Woude, J.A.D., Wiegant, K., van Heerwaarden, R.J., Spruijt, S., van Roermund, P.M., Custers, R.J.H., Mastbergen, S.C., Lafeber, F., 2017. Knee joint distraction compared with high tibial osteotomy:a randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 25, 876-886.
    Van Eck, J., 2020. Applying gene editing to tailor precise genetic modifications in plants. J. Biol. Chem. 295, 13267-13276.
    van Kampen, S.J., van Rooij, E., 2021. CRISPR base editing lowers cholesterol in monkeys. Nat. Biotechnol. 39, 920-921.
    van Meurs, J.B., 2017. Osteoarthritis year in review 2016:genetics, genomics and epigenetics.Osteoarthritis Cartilage 25, 181-189.
    van Meurs, J.B., Uitterlinden, A.G., 2012. Osteoarthritis year 2012 in review:genetics and genomics.Osteoarthritis Cartilage 20, 1470-1476.
    Varela-Eirin, M., Varela-Vazquez, A., Guitian-Caamano, A., Paino, C.L., Mato, V., Largo, R., Aasen, T., Tabernero, A., Fonseca, E., Kandouz, M., et al., 2018. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis.Cell Death Dis. 9, 1166.
    Venkatesan, N., Barre, L., Benani, A., Netter, P., Magdalou, J., Fournel-Gigleux, S., Ouzzine, M., 2004.Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery:a strategy to promote cartilage repair. Proc. Natl. Acad. Sci. U. S. A. 101, 18087-18092.
    Villiger, L., Grisch-Chan, H.M., Lindsay, H., Ringnalda, F., Pogliano, C.B., Allegri, G., Fingerhut, R., Haberle, J., Matos, J., Robinson, M.D., et al., 2018. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519-1525.
    Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., Klasic, M., Zoldos, V., 2016.Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615- 5628.
    Walton, R.T., Christie, K.A., Whittaker, M.N., Kleinstiver, B.P., 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296.
    Wang, G., Evans, C.H., Benson, J.M., Hutt, J.A., Seagrave, J., Wilder, J.A., Grieger, J.C., Samulski, R.J., Terse, P.S., 2016. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Mol. Ther. Methods Clin. Dev. 3, 15052.
    Wang, H., Leng, Y., Gong, Y., 2018. Bone Marrow Fat and Hematopoiesis. Front. Endocrinol. 9, 694.
    Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., Jaenisch, R., 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918.
    Wang, J., He, Z., Wang, G., Zhang, R., Duan, J., Gao, P., Lei, X., Qiu, H., Zhang, C., Zhang, Y., et al., 2022. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331- 340.
    Wang, Q.X., Liu, X., Zhou, J.H., Yang, C., Wang, G.X., Tan, Y.L., Wu, Y., Zhang, S.J., Yi, K.K., Kang, C.S., 2019. The CRISPR-Cas13a Gene-Editing System Induces Collateral Cleavage of RNA in Glioma Cells. Adv. Sci. 6, 1901299.
    Wang, W., Zhu, Y., Sun, Z., Jin, C., Wang, X., 2021. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-beta/SMAD2 signaling. Arthritis Res. Ther. 23, 84.
    Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., Zhou, J., Heng, B.C., Zou, X.H., Ouyang, H., et al., 2017. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 8, 189.
    Wang, Y.J., Wang, Y.N., Pan, D., Yu, H.P., Zhang, Y.F., Chen, W.Z., Li, F., Wu, Z.W., Ji, Q.J., 2022. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40, 111418.
    Watson Levings, R.S., Broome, T.A., Smith, A.D., Rice, B.L., Gibbs, E.P., Myara, D.A., Hyddmark, E.V., Nasri, E., Zarezadeh, A., Levings, P.P., et al., 2018. Gene Therapy for Osteoarthritis:Pharmacokinetics of Intra-Articular Self-Complementary Adeno-Associated Virus Interleukin-1 Receptor Antagonist Delivery in an Equine Model. Hum Gene Ther. Clin. Dev. 29, 90-100.
    Wei, Y., Luo, L., Gui, T., Yu, F., Yan, L., Yao, L., Zhong, L., Yu, W., Han, B., Patel, J.M., et al., 2021.Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci. Transl Med.13, eabb3946.
    Weisheit, I., Kroeger, J.A., Malik, R., Klimmt, J., Crusius, D., Dannert, A., Dichgans, M., Paquet, D., 2020. Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing. Cell Rep. 31, 107689.
    Wilkinson, J.M., Zeggini, E., 2021. The Genetic Epidemiology of Joint Shape and the Development of Osteoarthritis. Calcif Tissue Int. 109, 257-276.
    Winkle, M., El-Daly, S.M., Fabbri, M., Calin, G.A., 2021. Noncoding RNA therapeutics-challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629-651.
    Woo, J., Lau, E., Lau, C.S., Lee, P., Zhang, J., Kwok, T., Chan, C., Chiu, P., Chan, K.M., Chan, A., et al., 2003. Socioeconomic impact of osteoarthritis in Hong Kong:utilization of health and social services, and direct and indirect costs. Arthritis Rheum. 49, 526-534.
    Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.N., Li, T., Chen, H., Huang, S., Fu, Z., Li, J., et al., 2019.
    miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 206, 87-100.
    Wu, T.J., Monokian, G., Mark, D.F., Wobbe, C.R., 1994. Transcriptional activation by herpes simplex virus type 1 VP16 in vitro and its inhibition by oligopeptides. Mol. Cell Biol. 14, 3484-3493.
    Wu, W.Y., Mohanraju, P., Liao, C., Adiego-Perez, B., Creutzburg, S.C.A., Makarova, K.S., Keessen, K., Lindeboom, T.A., Khan, T.S., Prinsen, S., et al., 2022. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487-4502.
    Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W., Trevino, A.E., Konermann, S., Chen, S., et al., 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670-676.
    Wu, Z., Yang, H., Colosi, P., 2010. Effect of genome size on AAV vector packaging. Mol. Ther.18, 80- 86.
    Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Y., Wang, Y., Li, F., Liu, C., Nan, H., Chen, W., et al., 2021.Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat. Chem. Biol. 17, 1132-1138.
    Xia, B., Di, C., Zhang, J., Hu, S., Jin, H., Tong, P., 2014. Osteoarthritis pathogenesis:a review of molecular mechanisms. Calcif Tissue Int. 95, 495-505.
    Xing, D., Liang, J.Q., Li, Y., Lu, J., Jia, H.B., Xu, L.Y., Ma, X.L., 2014. Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop Surg. 6, 288-293.
    Xu, C., Zhou, Y., Xiao, Q., He, B., Geng, G., Wang, Z., Cao, B., Dong, X., Bai, W., Wang, Y., et al., 2021.Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat.Methods 18, 499-506.
    Xu, K., Ren, C.H., Liu, Z.T., Zhang, T., Zhang, T.T., Li, D., Wang, L., Yan, Q., Guo, L.J., Shen, J.C., et al., 2015. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cell Mol. Life Sci. 72, 383-399.
    Xu, W., Zhang, C.W., Yang, Y.X., Zhao, S., Kang, G.T., He, X.Q., Song, J.L., Yang, J.X., 2020. Versatile Nucleotides Substitution in Plant Using an Improved Prime Editing System. Mol. Plant 13, 675-678.
    Xu, X., Chemparathy, A., Zeng, L., Kempton, H.R., Shang, S., Nakamura, M., Qi, L.S., 2021. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. cell 81 4333-4345.
    Xu, X., Tao, Y., Gao, X., Zhang, L., Li, X., Zou, W., Ruan, K., Wang, F., Xu, G.L., Hu, R., 2016. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009.
    Xu, Z., Kuang, Y., Ren, B., Yan, D., Yan, F., Spetz, C., Sun, W., Wang, G., Zhou, X., Zhou, H., 2021.SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol 22, 6.
    Xue, N., Liu, X., Zhang, D., Wu, Y., Zhong, Y., Wang, J., Fan, W., Jiang, H., Zhu, B., Ge, X., et al., 2023.Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat.Commun. 14, 1224.
    Yamazaki, T., Hatano, Y., Handa, T., Kato, S., Hoida, K., Yamamura, R., Fukuyama, T., Uematsu, T., Kobayashi, N., Kimura, H., et al., 2017. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS ONE 12, e0177764.
    Yan, J., Chen, S.A., Local, A., Liu, T., Qiu, Y., Dorighi, K.M., Preissl, S., Rivera, C.M., Wang, C., Ye, Z., et al., 2018. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res. 28, 204-220.
    Yan, S., Zheng, X., Lin, Y., Li, C., Liu, Z., Li, J., Tu, Z., Zhao, Y., Huang, C., Chen, Y., et al., 2023. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed.Eng. 7, 629-646.
    Yan, W.X., Chong, S., Zhang, H., Makarova, K.S., Koonin, E.V., Cheng, D.R., Scott, D.A., 2018. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol. Cell 70, 327-339.
    Yan, W.X., Hunnewell, P., Alfonse, L.E., Carte, J.M., Keston-Smith, E., Sothiselvam, S., Garrity, A.J., Chong, S., Makarova, K.S., Koonin, E.V., et al., 2019. Functionally diverse type V CRISPR-Cas systems.Science 363, 88-91.
    Yang, H., Patel, D.J., 2019. CasX:a new and small CRISPR gene-editing protein. Cell Res. 29, 345-346.
    Yang, M., Zhang, L., Stevens, J., Gibson, G., 2014. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone 69, 118-125.
    Yang, Y., Ren, J., Sun, Y., Xue, Y., Zhang, Z., Gong, A., Wang, B., Zhong, Z., Cui, Z., Xi, Z., et al., 2018.A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ 25, 1870-1884.
    Yao, J.Y., Wang, Y., An, J., Mao, C.M., Hou, N., Lv, Y.X., Wang, Y.L., Cui, F., Huang, M., Yang, X., 2003. Mutation analysis of the Smad3 gene in human osteoarthritis. Eur. J. Hum. Genet. 11, 714-717.
    Yao, X., Wang, X., Liu, J., Shi, L., Huang, P., Yang, H., 2018. CRISPR/Cas9-mediated Targeted Integration In Vivo Using a Homology-mediated End Joining-based Strategy. J. Vis. Exp. 56844.
    Yeh, W.H., Shubina-Oleinik, O., Levy, J.M., Pan, B., Newby, G.A., Wornow, M., Burt, R., Chen, J.C., Holt, J.R., Liu, D.R., 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12, eaay9101.
    Yoon, D.S., Lee, K.M., Cho, S., Ko, E.A., Kim, J., Jung, S., Shim, J.H., Gao, G., Park, K.H., Lee, J.W., 2021. Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage.Int. J. Med. Sci. 18, 3353-3360.
    Yu, D., Peat, G., Bedson, J., Jordan, K.P., 2015. Annual consultation incidence of osteoarthritis estimated from population-based health care data in England. Rheumatology 54, 2051-2060.
    Yu, Y., Leete, T.C., Born, D.A., Young, L., Barrera, L.A., Lee, S.J., Rees, H.A., Ciaramella, G., Gaudelli, N.M., 2020. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052.
    Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., Tsai, J.C., Weissman, J.S., Dueber, J.E., Qi, L.S., et al., 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350.
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A.,et al., 2015. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163, 759-771.
    Zhang, C., Konermann, S., Brideau, N.J., Lotfy, P., Wu, X., Novick, S.J., Strutzenberg, T., Griffin, P.R., Hsu, P.D., Lyumkis, D., 2018. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell 175, 212-223.
    Zhang, D., Zhang, H., Li, T., Chen, K., Qiu, J.L., Gao, C., 2017. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Bio. 18, 191.
    Zhang, D.W., Yang, Q.S., Zhu, J.Y., Cao, X.R., Li, L.W., Zhu, Q.S., 2007. Amelioration of osteoarthritis by intra-articular hyaluronan synthase 2 gene therapy. Med. Hypotheses 69, 1111-1113.
    Zhang, G., Liu, Y., Huang, S., Qu, S., Cheng, D., Yao, Y., Ji, Q., Wang, X., Huang, X., Liu, J., 2022.Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856.
    Zhang, J., Liu, G.H., Qu, J., Song, M., 2020. Treating osteoarthritis via gene therapy with rejuvenation factors. Gene therapy 27, 309-311.
    Zhang, S., Teo, K.Y.W., Chuah, S.J., Lai, R.C., Lim, S.K., Toh, W.S., 2019. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis.Biomaterials 200, 35-47.
    Zhang, X., Liu, X., Ni, X., Feng, P., Wang, Y.U., 2019. Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J. Biosci. 44, 128.
    Zhang, X., Lv, S., Luo, Z., Hu, Y., Peng, X., Lv, J., Zhao, S., Feng, J., Huang, G., Wan, Q.L., et al., 2021.MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression in vivo. Nucleic Acids Res. 49, 4171-4185.
    Zhang, X., Mao, Z., Yu, C., 2004. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop Res. 22, 742-750.
    Zhang, X., Wang, J., Cheng, Q., Zheng, X., Zhao, G., Wang, J., 2017. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3, 17018.
    Zhang, X., Wang, W., Shan, L., Han, L., Ma, S.F., Zhang, Y., Hao, B.T., Lin, Y., Rong, Z.L., 2018. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9, 380-383.
    Zhang, Y., Jordan, J.M., 2008. Epidemiology of osteoarthritis. Rheum Dis. Clin. North Am. 34, 515-529.
    Zhang, Z., Chen, J., Zhu, Z., Zhu, Z., Liao, X., Wu, J., Cheng, J., Zhang, X., Mei, H., Yang, G., 2020.CRISPR-Cas13-Mediated Knockdown of lncRNA-GACAT3 Inhibited Cell Proliferation and Motility, and Induced Apoptosis by Increasing p21, Bax, and E-Cadherin Expression in Bladder Cancer. Front.Mol. Biosci. 7, 627774.
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
    Zhao, R.L., Zhang, X.M., Jia, L.N., Song, W., Sun, Y.L., Meng, X.Y., Peng, X.X., 2019. (p)NNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair. Biomed. Res. Int., 2761241.Zhi, S., Chen, Y., Wu, G., Wen, J., Wu, J., Liu, Q., Li, Y., Kang, R., Hu, S., Wang, J., et al., 2021. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283-294.
    Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., et al., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275- 278.
    Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X.,et al., 2018. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440-446.
    Zhou, H., Su, J., Hu, X., Zhou, C., Li, H., Chen, Z., Xiao, Q., Wang, B., Wu, W., Sun, Y., et al., 2020.Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice.Cell 181, 590-603.
    Zhou, P.H., Qiu, B., Deng, R.H., Li, H.J., Xu, X.F., Shang, X.F., 2018. Chondroprotective Effects of Hyaluronic Acid-Chitosan Nanoparticles Containing Plasmid DNA Encoding Cytokine Response Modifier A in a Rat Knee Osteoarthritis Model. Cell Physiol. Biochem. 47, 1207-1216.
    Zhuang, Y., Liu, J., Wu, H., Zhu, Q., Yan, Y., Meng, H., Chen, P.R., Yi, C., 2022. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29-37.
    Zuo, E., Sun, Y., Yuan, T., He, B., Zhou, C., Ying, W., Liu, J., Wei, W., Zeng, R., Li, Y., et al., 2020. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600-604.
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 录用日期:  2023-07-27
  • 修回日期:  2023-07-13
  • 网络出版日期:  2023-07-31

目录

    /

    返回文章
    返回