留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deciphering the evolution and complexity of wheat germplasm from a genomic perspective

Zihao Wang Lingfeng Miao Yongming Chen Huiru Peng Zhongfu Ni Qixin Sun Weilong Guo

Zihao Wang, Lingfeng Miao, Yongming Chen, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.002
引用本文: Zihao Wang, Lingfeng Miao, Yongming Chen, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.002
Zihao Wang, Lingfeng Miao, Yongming Chen, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.002
Citation: Zihao Wang, Lingfeng Miao, Yongming Chen, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.002

Deciphering the evolution and complexity of wheat germplasm from a genomic perspective

doi: 10.1016/j.jgg.2023.08.002
基金项目: 

We thank Wenxuan Zhao for collecting published databases and resources. We thank Yongfa Wang for helpful discussions on the evolution of wheat. This work has been supported by the National Natural Science Foundation of China (grant No. 32272124 and 31991210). This work is also supported by the 2115 Talent Development Program.

详细信息
    通讯作者:

    Weilong Guo, Email address: guoweilong@cau.edu.cn

Deciphering the evolution and complexity of wheat germplasm from a genomic perspective

Funds: 

We thank Wenxuan Zhao for collecting published databases and resources. We thank Yongfa Wang for helpful discussions on the evolution of wheat. This work has been supported by the National Natural Science Foundation of China (grant No. 32272124 and 31991210). This work is also supported by the 2115 Talent Development Program.

  • 摘要: Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progresses in studying on the wheat genome are substantially trailed behind those of other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
  • Abrouk, M., Athiyannan, N., Müller, T., Pailles, Y., Stritt, C., Roulin, A.C., Chu, C., Liu, S., Morita, T., Handa, H., et al., 2021. Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Commun. Biol. 4, 375.
    Alaux, M., Rogers, J., Letellier, T., Flores, R., Alfama, F., Pommier, C., Mohellibi, N., Durand, S., Kimmel, E., Michotey, C., et al., 2018. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 19, 111.
    Allaby, R.G., Stevens, C.J., Kistler, L.,Fuller, D.Q., 2022. Emerging evidence of plant domestication as a landscape-level process. Trends Ecol. Evol. 37, 268-279.
    Ankori, H.,Zohary, D., 1962. Natural hybridization between aegilops sharonensis and Ae.longissima;a morphological and cytological study. Cytologia 27, 314-324.
    Arora, S., Steed, A., Goddard, R., Gaurav, K., O'Hara, T., Schoen, A., Rawat, N., Elkot, A.F., Korolev, A.V., Chinoy, C., et al., 2023. A wheat kinase and immune receptor form host-specificity barriers against the blast fungus. Nat. Plants 9, 385-392.
    Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., et al., 2019. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139-143.
    Athiyannan, N., Abrouk, M., Boshoff, W.H.P., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., et al., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
    Aury, J.-M., Engelen, S., Istace, B., Monat, C., Lasserre-Zuber, P., Belser, C., Cruaud, C., Rimbert, H., Leroy, P., Arribat, S., et al., 2022. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience 11, giac034.
    Avni, R., Lux, T., Minz-Dub, A., Millet, E., Sela, H., Distelfeld, A., Deek, J., Yu, G., Steuernagel, B., Pozniak, C., et al., 2022. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J. 110, 179-192.
    Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S.O., Gundlach, H., Hale, I., Mascher, M., Spannagl, M., Wiebe, K., et al., 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97.
    Bacher, H., Zhu, F., Gao, T., Liu, K., Dhatt, B.K., Awada, T., Zhang, C., Distelfeld, A., Yu, H., Peleg, Z., et al., 2021. Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. Plant Physiol. 187, 1149-1162.
    Balfourier, F., Bouchet, S., Robert, S., De Oliveira, R., Rimbert, H., Kitt, J., Choulet, F.,Paux, E., 2019. Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 5, eaav0536.
    Bayer, P.E., Petereit, J., Durant, E., Monat, C., Rouard, M., Hu, H., Chapman, B., Li, C., Cheng, S., Batley, J., et al., 2022. Wheat Panache:A pangenome graph database representing presence-absence variation across sixteen bread wheat genomes. Plant Genome 15, e20221.
    Betts, A., Jia, P.W.,Dodson, J., 2014. The origins of wheat in China and potential pathways for its introduction:A review. Quat. Int. 348, 158-168.
    Bevan, M.W., Uauy, C., Wulff, B.B.H., Zhou, J., Krasileva, K.,Clark, M.D., 2017. Genomic innovation for crop improvement. Nature 543, 346-354.
    Bi, A., Xu, D., Kang, L., Guo, Y., Song, X., Zhao, X., Zhang, J., Zhang, Z., Li, Y., Yin, C., et al., 2023. An integrated map of genetic variation from 1,062 wheat genomes. BioRxiv, 2023.2003.2031.535022.
    Bian, J., Cui, L., Wang, X., Yang, G., Huo, F., Ling, H., Chen, L., She, K., Du, X., Levi, B., et al., 2020. Genomic and phenotypic divergence in wild barley driven by microgeographic adaptation. Adv. Sci. 7, 2000709.
    Bilgic, H., Hakki, E.E., Pandey, A., Khan, M.K.,Akkaya, M.S., 2016. Ancient dna from 8400 year-old çatalhöyük wheat:implications for the origin of neolithic agriculture. PLoS One 11, e0151974.
    Borrill, P., Harrington, S.A., Simmonds, J.,Uauy, C., 2019. identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol. 180, 1740-1755.
    Brinton, J., Ramirez-Gonzalez, R.H., Simmonds, J., Wingen, L., Orford, S., Griffiths, S., Haberer, G., Spannagl, M., Walkowiak, S., Pozniak, C., et al., 2020. A haplotype-led approach to increase the precision of wheat breeding. Commun. Biol. 3, 712.
    Chen, Y., Guo, Y., Guan, P., Wang, Y., Wang, X., Wang, Z., Qin, Z., Ma, S., Xin, M., Hu, Z., et al., 2023a. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol. Plant 16, 393-414.
    Chen, Y., Guo, Y., Xie, X., Wang, Z., Miao, L., Yang, Z., Jiao, Y., Xie, C., Liu, J., Hu, Z., et al., 2023b. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. Plant Physiol., kiad319.
    Chen, Y., Song, W., Xie, X., Wang, Z., Guan, P., Peng, H., Jiao, Y., Ni, Z., Sun, Q.,Guo, W., 2020. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694-1708.
    Chen, Z., Bu, Q., Liu, G., Wang, M., Wang, H., Liu, H., Li, X., Li, H., Fang, J., Liang, Y., et al., 2023c. Genomic decoding of breeding history to guide breeding-by-design in rice.Natl. Sci. Rev., nwad029.
    Cheng, H., Liu, J., Wen, J., Nie, X., Xu, L., Chen, N., Li, Z., Wang, Q., Zheng, Z., Li, M., et al., 2019. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136.
    Chia, J.-M., Song, C., Bradbury, P.J., Costich, D., de Leon, N., Doebley, J., Elshire, R.J., Gaut, B., Geller, L., Glaubitz, J.C., et al., 2012. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803-807.
    Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., et al., 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721.
    Civáň, P., Ivaničová, Z.,Brown, T.A., 2013. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent. PLoS One 8, e81955.
    Concia, L., Veluchamy, A., Ramirez-Prado, J.S., Martin-Ramirez, A., Huang, Y., Perez, M., Domenichini, S., Rodriguez Granados, N.Y., Kim, S., Blein, T., et al., 2020. Wheat chromatin architecture is organized in genome territories and transcription factories.Genome Biol. 21, 104.
    Coombes, B., Fellers, J.P., Grewal, S., Rusholme-Pilcher, R., Hubbart-Edwards, S., Yang, C.-y., Joynson, R., King, I.P., King, J.,Hall, A., 2022. Whole-genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. Plant Biotechnol. J. 21, 482-496.
    Debernardi, J.M., Lin, H., Chuck, G., Faris, J.D.,Dubcovsky, J., 2017. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144, 1966-1975.
    Dubcovsky, J.,Dvorak, J., 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862-1866.
    Dvorak, J.,Akhunov, E.D., 2005. Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171, 323-332.
    Ellstrand, N.C., Heredia, S.M., Leak-Garcia, J.A., Heraty, J.M., Burger, J.C., Yao, L., Nohzadeh-Malakshah, S.,Ridley, C.E., 2010. Crops gone wild:evolution of weeds and invasives from domesticated ancestors. Evol. Appl. 3, 494-504.
    Faris, J.D., Zhang, Z.,Chao, S., 2014. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication. Gene 542, 198-208.
    Fradgley, N., Gardner, K.A., Cockram, J., Elderfield, J., Hickey, J.M., Howell, P., Jackson, R.,Mackay, I.J., 2019. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol. 17, e3000071.
    Gardiner, L.J., Joynson, R., Omony, J., Rusholme-Pilcher, R., Olohan, L., Lang, D., Bai, C., Hawkesford, M., Salt, D., Spannagl, M., et al., 2018. Hidden variation in polyploid wheat drives local adaptation. Genome Res. 28, 1319-1332.
    Geng, S., Kong, X., Song, G., Jia, M., Guan, J., Wang, F., Qin, Z., Wu, L., Lan, X., Li, A., et al., 2019. DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici.New Phytol. 221, 1023-1035.
    Gore, M.A., Chia, J.-M., Elshire, R.J., Sun, Q., Ersoz, E.S., Hurwitz, B.L., Peiffer, J.A., McMullen, M.D., Grills, G.S., Ross-Ibarra, J., et al., 2009. A first-generation haplotype map of maize. Science 326, 1115-1117.
    Guo, W., Xin, M., Wang, Z., Yao, Y., Hu, Z., Song, W., Yu, K., Chen, Y., Wang, X., Guan, P., et al., 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat.Commun. 11, 5085.
    Guo, Y., Chen, Y., Wang, Y., Wu, X., Zhang, X., Mao, W., Yu, H., Guo, K., Xu, J., Ma, L., et al., 2023. The translational landscape of bread wheat during grain development. Plant Cell, koad075.
    Haberer, G., Kamal, N., Bauer, E., Gundlach, H., Fischer, I., Seidel, M.A., Spannagl, M., Marcon, C., Ruban, A., Urbany, C., et al., 2020. European maize genomes highlight intraspecies variation in repeat and gene content. Nat. Genet. 52, 950-957.
    Hafeez, A.N., Arora, S., Ghosh, S., Gilbert, D., Bowden, R.L.,Wulff, B.B.H., 2021. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant 14, 1053-1070.
    Hao, C., Jiao, C., Hou, J., Li, T., Liu, H., Wang, Y., Zheng, J., Liu, H., Bi, Z., Xu, F., et al., 2020. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in china. Mol. Plant 13, 1733-1751.
    He, C., Bi, S., Li, Y., Song, C., Li, Q., Saeed, S., Chen, W., Zhao, C., Xu, X., Lan, C., et al., 2023. Dynamic atlas of histone modifications and gene regulatory networks in endosperm of bread wheat. Research Square, https://doi.org/10.21203/rs.21203.rs-2593763/v2593761.
    He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P., Wiebe, K., et al., 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896-904.
    He, F., Wang, W., Rutter, W.B., Jordan, K.W., Ren, J., Taagen, E., DeWitt, N., Sehgal, D., Sukumaran, S., Dreisigacker, S., et al., 2022. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat. Commun. 13, 826.
    Huang, X., Huang, S., Han, B.,Li, J., 2022. The integrated genomics of crop domestication and breeding. Cell 185, 2828-2839.
    Huang, X., Kurata, N., Wei, X., Wang, Z.-X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice.Nature 490, 497-501.
    Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., et al., 2010. Genome-wide association studies of 14 agronomic traits in rice landraces.Nat. Genet. 42, 961-967.
    Huang, X., Zhu, M., Zhuang, L., Zhang, S., Wang, J., Chen, X., Wang, D., Chen, J., Bao, Y., Guo, J., et al., 2018. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor. Appl. Genet. 131, 1967-1986.
    Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., et al., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
    Huynh, S., Marcussen, T., Felber, F.,Parisod, C., 2019. Hybridization preceded radiation in diploid wheats. Mol. Phylogenet. Evol. 139, 106554.
    International Rice Genome Sequencing Project, 2005. The map-based sequence of the rice genome. Nature 436, 793-800.
    International Wheat Genome Sequencing Consortium, 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
    Jantasuriyarat, C., Vales, M.I., Watson, C.J.W.,Riera-Lizarazu, O., 2004. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 261-273.
    Jia, J., Li, H., Zhang, X., Li, Z.,Qiu, L., 2017. Genomics-based plant germplasm research(GPGR). Crop J. 5, 166-174.
    Jia, J., Xie, Y., Cheng, J., Kong, C., Wang, M., Gao, L., Zhao, F., Guo, J., Wang, K., Li, G., et al., 2021. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22, 26.
    Jia, Z., Gao, P., Yin, F., Quilichini, T.D., Sheng, H., Song, J., Yang, H., Gao, J., Chen, T., Yang, B., et al., 2022. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun. Biol. 5, 1412.
    Jiang, Y., Yuan, Z., Hu, H., Ye, X., Zheng, Z., Wei, Y., Zheng, Y.-L., Wang, Y.-G.,Liu, C., 2020. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. New Phytol. 228, 409-414.
    Jiang, Y.-F., Chen, Q., Wang, Y., Guo, Z.-R., Xu, B.-J., Zhu, J., Zhang, Y.-Z., Gong, X., Luo, C.-H., Wu, W., et al., 2019. Re-acquisition of the brittle rachis trait via a transposon insertion in domestication gene Q during wheat de-domestication. New Phytol. 224, 961-973.
    Jiao, C., Hao, C., Li, T., Bohra, A., Wang, L., Hou, J., Liu, H., Liu, H., Zhao, J., Wang, Y., et al., 2023. Fast integration and accumulation of breeding beneficial alleles through ab-namic strategy in wheat. Plant Commun., 100549.
    Juliana, P., Poland, J., Huerta-Espino, J., Shrestha, S., Crossa, J., Crespo-Herrera, L., Toledo, F.H., Govindan, V., Mondal, S., Kumar, U., et al., 2019. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530-1539.
    Jupe, F., Witek, K., Verweij, W., Śliwka, J., Pritchard, L., Etherington, G.J., Maclean, D., Cock, P.J., Leggett, R.M., Bryan, G.J., et al., 2013. Resistance gene enrichment sequencing(RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530-544.
    Kale, S.M., Schulthess, A.W., Padmarasu, S., Boeven, P.H.G., Schacht, J., Himmelbach, A., Steuernagel, B., Wulff, B.B.H., Reif, J.C., Stein, N., et al., 2022. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730-1742.
    Kerber, E.R.,Rowland, G.G., 1974. Origin of the free threshing character in hexaploid wheat.Can. J. Genet. Cytol. 16, 145-154.
    Kistler, L., Maezumi, S.Y., Gregorio de Souza, J., Przelomska, N.A.S., Malaquias Costa, F., Smith, O., Loiselle, H., Ramos-Madrigal, J., Wales, N., Ribeiro, E.R., et al., 2018. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309-1313.
    Klymiuk, V., Chawla, H.S., Wiebe, K., Ens, J., Fatiukha, A., Govta, L., Fahima, T.,Pozniak, C.J., 2022. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun. Biol. 5, 826.
    Levy, A.,Ayal, S. 2005. Wheat Domestication and Dedomestication-What Are the Odds?, in:Gressel, J. (Eds.), Crop ferality and volunteerism. CRC Press, pp. 167-173.
    Levy, A.A.,Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell 34, 2549-2567.
    Li, A., Hao, C., Wang, Z., Geng, S., Jia, M., Wang, F., Han, X., Kong, X., Yin, L., Tao, S., et al., 2022a. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Mol. Plant 15, 504-519.
    Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C.,Zhang, X., 2013. Wheat centromeric retrotransposons:the new ones take a major role in centromeric structure. Plant J. 73, 952-965.
    Li, G., Wang, L., Yang, J., He, H., Jin, H., Li, X., Ren, T., Ren, Z., Li, F., Han, X., et al., 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 53, 574-584.
    Li, L.-F., Zhang, Z.-B., Wang, Z.-H., Li, N., Sha, Y., Wang, X.-F., Ding, N., Li, Y., Zhao, J., Wu, Y., et al., 2022b. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant 15, 488-503.
    Li, Y., Fu, X., Zhao, M., Zhang, W., Li, B., An, D., Li, J., Zhang, A., Liu, R.,Liu, X., 2018. A Genome-wide View of Transcriptome Dynamics During Early Spike Development in Bread Wheat. Sci. Rep. 8, 15338.
    Li, Y., Si, Z., Wang, G., Shi, Z., Chen, J., Qi, G., Jin, S., Han, Z., Gao, W., Tian, Y., et al., 2023. Genomic insights into the genetic basis of cotton breeding in china. Mol. Plant 16, 662-766.
    Li, Z., Hu, Y., Ma, X., Da, L., She, J., Liu, Y., Yi, X., Cao, Y., Xu, W., Jiao, Y., et al., 2022c.WheatCENet:A database for comparative co-expression networks analysis of allohexaploid wheat and its progenitors. Genom. Proteom. Bioinf.
    Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., et al., 2019. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol. 20, 139.
    Lin, X., Xu, Y., Wang, D., Yang, Y., Zhang, X., Bie, X., Wang, H., Jiang, J., Chen, Z., Gui, L., et al., 2023. Systematic mining and genetic characterization of regulatory factors for wheat spike development. BioRxiv, 2022.2011.2011.516122.
    Ling, H.-Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., Cao, Y., Gao, Q., Zheng, S., Li, Y., et al., 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu.Nature 557, 424-428.
    Liu, G., Zhang, R., Li, S., Ullah, R., Yang, F., Wang, Z., Guo, W., You, M., Li, B., Xie, C., et al., 2023. TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. Sci. China Life Sci. 66, 1647-1664.
    Liu, J., Rasheed, A., He, Z., Imtiaz, M., Arif, A., Mahmood, T., Ghafoor, A., Siddiqui, S.U., Ilyas, M.K., Wen, W., et al., 2019a. Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor. Appl.Genet. 132, 2509-2523.
    Liu, J., Seetharam, A.S., Chougule, K., Ou, S., Swentowsky, K.W., Gent, J.I., Llaca, V., Woodhouse, M.R., Manchanda, N., Presting, G.G., et al., 2020. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 21, 121.
    Liu, J., Yao, Y., Xin, M., Peng, H., Ni, Z.,Sun, Q., 2022. Shaping polyploid wheat for success:Origins, domestication, and the genetic improvement of agronomic traits. J. Integr.Plant Biol. 64, 536-563.
    Liu, X., Jones, P.J., Motuzaite Matuzeviciute, G., Hunt, H.V., Lister, D.L., An, T., Przelomska, N., Kneale, C.J., Zhao, Z.,Jones, M.K., 2019b. From ecological opportunism to multi-cropping:Mapping food globalisation in prehistory. Quat. Sci. Rev. 206, 21-28.
    Liu, Y., Yuan, J., Jia, G., Ye, W., Jeffrey Chen, Z.,Song, Q., 2021. Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. Plant J. 105, 678-690.
    Liu, Z., Qin, J., Tian, X., Xu, S., Wang, Y., Li, H., Wang, X., Peng, H., Yao, Y., Hu, Z., et al., 2018. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol. J. 16, 714-726.
    Liu, Z., Yue, W., Li, D., Wang, R.R.C., Kong, X., Lu, K., Wang, G., Dong, Y., Jin, W.,Zhang, X., 2008. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117, 445-456.
    Long, T., Leipe, C., Jin, G., Wagner, M., Guo, R., Schröder, O.,Tarasov, P.E., 2018. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat.Plants 4, 272-279.
    Lou, H., Zhang, R., Liu, Y., Guo, D., Zhai, S., Chen, A., Zhang, Y., Xie, C., You, M., Peng, H., et al., 2021. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theor. Appl. Genet. 134, 399-418.
    Loudya, N., Mishra, P., Takahagi, K., Uehara-Yamaguchi, Y., Inoue, K., Bogre, L., Mochida, K.,Lopez-Juez, E., 2021. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf. Genome Biol. 22, 151.
    Lv, Z., Li, Z., Wang, M., Zhao, F., Zhang, W., Li, C., Gong, L., Zhang, Y., Mason, A.S.,Liu, B., 2021. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol. 19, 42.
    Ma, S., Wang, M., Wu, J., Guo, W., Chen, Y., Li, G., Wang, Y., Shi, W., Xia, G., Fu, D., et al., 2021. WheatOmics:A platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 14, 1965-1968.
    Maccaferri, M., Harris, N.S., Twardziok, S.O., Pasam, R.K., Gundlach, H., Spannagl, M., Ormanbekova, D., Lux, T., Prade, V.M., Milner, S.G., et al., 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat.Genet. 51, 885-895.
    Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., Olsen, O.-A., et al., 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092.
    Matsuoka, Y., 2011. Evolution of polyploid triticum wheats under cultivation:the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52, 750-764.
    McClatchie, M., Bogaard, A., Colledge, S., Whitehouse, N.J., Schulting, R.J., Barratt, P.,McLaughlin, T.R., 2014. Neolithic farming in north-western Europe:archaeobotanical evidence from Ireland. J. Archaeol. Sci. 51, 206-215.
    Müller, T., Schierscher-Viret, B., Fossati, D., Brabant, C., Schori, A., Keller, B.,Krattinger, S.G., 2018. Unlocking the diversity of genebanks:whole-genome marker analysis of Swiss bread wheat and spelt. Theor. Appl. Genet. 131, 407-416.
    Nave, M., Avni, R., Çakır, E., Portnoy, V., Sela, H., Pourkheirandish, M., Ozkan, H., Hale, I., Komatsuda, T., Dvorak, J., et al., 2019. Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B). Plant Sci. 285, 193-199.
    Oliveira, H.R., Jacocks, L., Czajkowska, B.I., Kennedy, S.L.,Brown, T.A., 2020. Multiregional origins of the domesticated tetraploid wheats. PLoS One 15, e0227148.
    Pang, Y., Liu, C., Wang, D., St. Amand, P., Bernardo, A., Li, W., He, F., Li, L., Wang, L., Yuan, X., et al., 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol.Plant 13, 1311-1327.
    Pankin, A., Altmüller, J., Becker, C.,von Korff, M., 2018. Targeted resequencing reveals genomic signatures of barley domestication. New Phytol. 218, 1247-1259.
    Pei, H., Li, Y., Liu, Y., Liu, P., Zhang, J., Ren, X.,Lu, Z., 2023. Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. aBIOTECH 4, 8-19.
    Polturak, G., Dippe, M., Stephenson, M.J., Chandra Misra, R., Owen, C., Ramirez-Gonzalez, R.H., Haidoulis, J.F., Schoonbeek, H.J., Chartrain, L., Borrill, P., et al., 2022. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proc.Natl. Acad. Sci. U.S.A. 119, e2123299119.
    Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., Lang, D., Bustos-Korts, D., Goué, N., Balfourier, F., et al., 2019a. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905-911.
    Pont, C., Wagner, S., Kremer, A., Orlando, L., Plomion, C.,Salse, J., 2019b. Paleogenomics:reconstruction of plant evolutionary trajectories from modern and ancient DNA.Genome Biol. 20, 29.
    Pourkheirandish, M., Dai, F., Sakuma, S., Kanamori, H., Distelfeld, A., Willcox, G., Kawahara, T., Matsumoto, T., Kilian, B.,Komatsuda, T., 2018. On the origin of the non-brittle rachis trait of domesticated einkorn wheat. Front. Plant Sci. 8.
    Pourkheirandish, M., Hensel, G., Kilian, B., Senthil, N., Chen, G., Sameri, M., Azhaguvel, P., Sakuma, S., Dhanagond, S., Sharma, R., et al., 2015. Evolution of the grain dispersal system in barley. Cell 162, 527-539.
    Powell, J.J., Fitzgerald, T.L., Stiller, J., Berkman, P.J., Gardiner, D.M., Manners, J.M., Henry, R.J.,Kazan, K., 2017. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol. J. 15, 533-543.
    Przewieslik-Allen, A.M., Wilkinson, P.A., Burridge, A.J., Winfield, M.O., Dai, X., Beaumont, M., King, J., Yang, C.-y., Griffiths, S., Wingen, L.U., et al., 2021. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7, 172-183.
    Purugganan, M.D., 2019. Evolutionary insights into the nature of plant domestication. Curr.Biol. 29, R705-R714.
    Rabanus-Wallace, M.T., Hackauf, B., Mascher, M., Lux, T., Wicker, T., Gundlach, H., Baez, M., Houben, A., Mayer, K.F.X., Guo, L., et al., 2021. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat.Genet. 53, 564-573.
    Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., et al., 2018. The transcriptional landscape of polyploid wheat. Science 361.
    Ran, X., Tang, T., Wang, M., Ye, L., Zhuang, Y., Zhao, F.,Zhang, Y., 2021. CSCS:a chromatin state interface for Chinese Spring bread wheat. aBIOTECH 2, 357-364.
    Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M.,Cloutier, S., 2019. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 20, 488.
    Ray, D.K., Mueller, N.D., West, P.C.,Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428.
    Riehl, S., Zeidi, M.,Conard, N.J., 2013. Emergence of agriculture in the foothills of the Zagros mountains of Iran. Science 341, 65-67.
    Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R.,Martin, W., 2002. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429-441.
    Sansaloni, C., Franco, J., Santos, B., Percival-Alwyn, L., Singh, S., Petroli, C., Campos, J., Dreher, K., Payne, T., Marshall, D., et al., 2020. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat.Commun. 11, 4572.
    Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., Shirasawa, K.,Isobe, S., 2021. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar 'Fielder'. DNA Res. 28.
    Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., et al., 2009. The B73 maize genome:complexity, diversity, and dynamics. Science 326, 1112-1115.
    Schulthess, A.W., Kale, S.M., Liu, F., Zhao, Y., Philipp, N., Rembe, M., Jiang, Y., Beukert, U., Serfling, A., Himmelbach, A., et al., 2022. Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat. Genet. 54, 1544-1552.
    Scott, M.F., Botigué, L.R., Brace, S., Stevens, C.J., Mullin, V.E., Stevenson, A., Thomas, M.G., Fuller, D.Q.,Mott, R., 2019. A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Nat. Plants 5, 1120-1128.
    Scott, M.F., Fradgley, N., Bentley, A.R., Brabbs, T., Corke, F., Gardner, K.A., Horsnell, R., Howell, P., Ladejobi, O., Mackay, I.J., et al., 2021. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 137.
    Sehgal, D., Dhakate, P., Ambreen, H., Shaik, K.H.B., Rathan, N.D., Anusha, N.M., Deshmukh, R.,Vikram, P., 2023. Wheat omics:advancements and opportunities. Plants 12, 426.
    Shao, Q., Li, C.,basangciren, 1980. Semi-wild wheat from Xizang (Tibet). Acta Genet. Sin. 7, 150-156.
    Sharma, J.S., Running, K.L.D., Xu, S.S., Zhang, Q., Peters Haugrud, A.R., Sharma, S., McClean, P.E.,Faris, J.D., 2019. Genetic analysis of threshability and other spike traits in the evolution of cultivated emmer to fully domesticated durum wheat. Mol. Genet.Genomics 294, 757-771.
    Shi, X., Cui, F., Han, X., He, Y., Zhao, L., Zhang, N., Zhang, H., Zhu, H., Liu, Z., Ma, B., et al., 2022. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol. Plant 15, 1440-1456.
    Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z., Tai, Y.-S., Gill, B.S.,Faris, J.D., 2006.Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547-555.
    Singh, K., Saripalli, G., Gautam, T., Prasad, P., Jain, N., Balyan, H.S.,Gupta, P.K., 2022. BS-Seq reveals major role of differential CHH methylation during leaf rust resistance in wheat (Triticum aestivum L.). Mol. Genet. Genomics 297, 731-749.
    Singh, S., Jighly, A., Sehgal, D., Burgueño, J., Joukhadar, R., Singh, S.K., Sharma, A., Vikram, P., Sansaloni, C.P., Govindan, V., et al., 2021. Direct introgression of untapped diversity into elite wheat lines. Nat. Food 2, 819-827.
    Slade, A.J., Fuerstenberg, S.I., Loeffler, D., Steine, M.N.,Facciotti, D., 2005. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 23, 75-81.
    Song, J.-M., Xie, W.-Z., Wang, S., Guo, Y.-X., Koo, D.-H., Kudrna, D., Gong, C., Huang, Y., Feng, J.-W., Zhang, W., et al., 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757-1767.
    Song, L., Liu, J., Cao, B., Liu, B., Zhang, X., Chen, Z., Dong, C., Liu, X., Zhang, Z., Wang, W., et al., 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617, 118-124.
    Sood, S., Kuraparthy, V., Bai, G.,Gill, B.S., 2009. The major threshability genes soft glume(sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor. Appl. Genet. 119, 341-351.
    Stevens, C.J., Murphy, C., Roberts, R., Lucas, L., Silva, F.,Fuller, D.Q., 2016. Between China and South Asia:A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26, 1541-1555.
    Sullivan, A., Purohit, P.K., Freese, N.H., Pasha, A., Esteban, E., Waese, J., Wu, A., Chen, M., Chin, C.Y., Song, R., et al., 2019. An 'eFP-Seq Browser' for visualizing and exploring RNA sequencing data. Plant J. 100, 641-654.
    Sun, L., Song, R., Wang, Y., Wang, X., Peng, J., Nevo, E., Ren, X.,Sun, D., 2022. New insights into the evolution of CAF1 family and utilization of TaCAF1Ia1 specificity to reveal the origin of the maternal progenitor for common wheat. J. Adv. Res. 42, 135-148.
    Tang, T., Tian, S., Wang, H., Lv, X., Xie, Y., Liu, J., Wang, M., Zhao, F., Zhang, W., Li, H., et al., 2023. Wheat-RegNet:An encyclopedia of common wheat hierarchical regulatory networks. Mol. Plant 16, 318-321.
    The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
    Tian, T., Wang, S., Yang, S., Yang, Z., Liu, S., Wang, Y., Gao, H., Zhang, S., Yang, X., Jiang, C., et al., 2023. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat. Genet. 55, 496-506.
    Tock, A.J., Holland, D.M., Jiang, W., Osman, K., Sanchez-Moran, E., Higgins, J.D., Edwards, K.J., Uauy, C., Franklin, F.C.H.,Henderson, I.R., 2021. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Res. 31, 1614-1628.
    Todesco, M., Owens, G.L., Bercovich, N., Légaré, J.-S., Soudi, S., Burge, D.O., Huang, K., Ostevik, K.L., Drummond, E.B.M., Imerovski, I., et al., 2020. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602-607.
    Vasudevan, A., Lévesque-Lemay, M., Edwards, T.,Cloutier, S., 2023. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun. Biol. 6, 426.
    Voss-Fels, K.P., Stahl, A., Wittkop, B., Lichthardt, C., Nagler, S., Rose, T., Chen, T.-W., Zetzsche, H., Seddig, S., Majid Baig, M., et al., 2019. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706-714.
    Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
    Wang, B., Lv, R., Zhang, Z., Yang, C., Xun, H., Liu, B.,Gong, L., 2022a. Homoeologous exchange enables rapid evolution of tolerance to salinity and hyper-osmotic stresses in a synthetic allotetraploid wheat. J. Exp. Bot. 73, 7488-7502.
    Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., Lyu, Z., Chen, L., Xu, S., Guo, J., et al., 2020a. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435.
    Wang, H., Yin, H., Jiao, C., Fang, X., Wang, G., Li, G., Ni, F., Li, P., Su, P., Ge, W., et al., 2020b. Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements. Proc. Natl. Acad. Sci. U.S.A. 117, 5955-5963.
    Wang, H., Zou, S., Li, Y., Lin, F.,Tang, D., 2020c. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun. 11, 1353.
    Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., et al., 2021a. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33, 865-881.
    Wang, M., Yuan, J., Qin, L., Shi, W., Xia, G.,Liu, S., 2020d. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol. J. 18, 791-804.
    Wang, W., Wang, Z., Li, X., Ni, Z., Hu, Z., Xin, M., Peng, H., Yao, Y., Sun, Q.,Guo, W., 2020e. SnpHub:an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. Gigascience 9.
    Wang, X., Chen, S., Shi, X., Liu, D., Zhao, P., Lu, Y., Cheng, Y., Liu, Z., Nie, X., Song, W., et al., 2019. Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat. Plant J. 98, 1015-1032.
    Wang, X., Guan, P., Xin, M., Wang, Y., Chen, X., Zhao, A., Liu, M., Li, H., Zhang, M., Lu, L., et al., 2021b. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theor.Appl. Genet. 134, 143-157.
    Wang, X., Hu, Y., He, W., Yu, K., Zhang, C., Li, Y., Yang, W., Sun, J., Li, X., Zheng, F., et al., 2022b. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation. Plant Commun. 3, 100345.
    Wang, Y., Abrouk, M., Gourdoupis, S., Koo, D.-H., Karafiátová, M., Molnár, I., Holušová, K., Doležel, J., Athiyannan, N., Cavalet-Giorsa, E., et al., 2023. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet. 55, 914-920.
    Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X.,Jiao, Y., 2017.Transcriptome Association Identifies Regulators of Wheat Spike Architecture. Plant Physiol. 175, 746-757.
    Wang, Z., Hao, C., Zhao, J., Li, C., Jiao, C., Xi, W., Hou, J., Li, T., Liu, H.,Zhang, X., 2021c.Genomic footprints of wheat evolution in China reflected by a Wheat660K SNP array.Crop J. 9, 29-41.
    Wang, Z., Wang, W., Xie, X., Wang, Y., Yang, Z., Peng, H., Xin, M., Yao, Y., Hu, Z., Liu, J., et al., 2022c. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891.
    Wu, D., Lao, S.,Fan, L., 2021. De-domestication:an extension of crop evolution. Trends Plant Sci. 26, 560-574.
    Wu, X., Ding, B., Zhang, B., Feng, J., Wang, Y., Ning, C., Wu, H., Zhang, F., Zhang, Q., Li, N., et al., 2019. Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces. Plant J. 99, 201-215.
    Xiang, D., Quilichini, T.D., Liu, Z., Gao, P., Pan, Y., Li, Q., Nilsen, K.T., Venglat, P., Esteban, E., Pasha, A., et al., 2019. The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell 31, 2888-2911.
    Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., et al., 2022. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718-1775.
    Xing, L., Yuan, L., Lv, Z., Wang, Q., Yin, C., Huang, Z., Liu, J., Cao, S., Zhang, R., Chen, P., et al., 2021. Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat-Haynaldia villosa translocated chromosome 6VS.6AL.Plant Biotechnol. J. 19, 1567-1578.
    Yang, Y., Zhang, X., Wu, L., Zhang, L., Liu, G., Xia, C., Liu, X.,Kong, X., 2021.Transcriptome profiling of developing leaf and shoot apices to reveal the molecular mechanism and co-expression genes responsible for the wheat heading date. BMC Genomics 22, 468.
    Yang, Z., Wang, Z., Wang, W., Xie, X., Chai, L., Wang, X., Feng, X., Li, J., Peng, H., Su, Z., et al., 2022. ggComp enables dissection of germplasm resources and construction of a multiscale germplasm network in wheat. Plant Physiol. 188, 1950-1965.
    Yu, G., Matny, O., Champouret, N., Steuernagel, B., Moscou, M.J., Hernández-Pinzón, I., Green, P., Hayta, S., Smedley, M., Harwood, W., et al., 2022a. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607.
    Yu, K., Feng, M., Yang, G., Sun, L., Qin, Z., Cao, J., Wen, J., Li, H., Zhou, Y., Chen, X., et al., 2020. Changes in Alternative Splicing in Response to Domestication and Polyploidization in Wheat. Plant Physiol. 184, 1955-1968.
    Yu, Y., Zhang, H., Long, Y., Shu, Y.,Zhai, J., 2022b. Plant Public RNA-seq Database:a comprehensive online database for expression analysis of~45 000 plant public RNA-Seq libraries. Plant Biotechnol. J. 20, 806-808.
    Yuan, J., Jiao, W., Liu, Y., Ye, W., Wang, X., Liu, B., Song, Q.,Chen, Z.J., 2020. Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat. BMC Biol. 18, 171.
    Yuan, J., Sun, H., Wang, Y., Li, L., Chen, S., Jiao, W., Jia, G., Wang, L., Mao, J., Ni, Z., et al., 2022. Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution. Genome Biol. 23, 34.
    Yuan, Y., Bayer, P.E., Batley, J.,Edwards, D., 2021. Current status of structural variation studies in plants. Plant Biotechnol. J. 19, 2153-2163.
    Zeng, X., Mishina, K., Jia, J., Distelfeld, A., Maughan, P.J., Kikuchi, S., Sassa, H.,Komatsuda, T., 2020. The brittle rachis trait in species belonging to the triticeae and its controlling genes Btr1 and Btr2. Front. Plant Sci. 11.
    Zhang, L., Dong, C., Chen, Z., Gui, L., Chen, C., Li, D., Xie, Z., Zhang, Q., Zhang, X., Xia, C., et al., 2021a. WheatGmap:a comprehensive platform for wheat gene mapping and genomic studies. Mol. Plant 14, 187-190.
    Zhang, L., He, C., Lai, Y., Wang, Y., Kang, L., Liu, A., Lan, C., Su, H., Gao, Y., Li, Z., et al., 2023a. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol. 24, 65.
    Zhang, W., Tan, C., Hu, H., Pan, R., Xiao, Y., Ouyang, K., Zhou, G., Jia, Y., Zhang, X.-Q., Hill, C.B., et al., 2023b. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Plant Biotechnol. J. 21, 46-62.
    Zhang, X., Wang, H., Sun, H., Li, Y., Feng, Y., Jiao, C., Li, M., Song, X., Wang, T., Wang, Z., et al., 2023c. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. Mol. Plant 16, 432-451.
    Zhang, Y., Li, Z., Liu, J., Zhang, Y., Ye, L., Peng, Y., Wang, H., Diao, H., Ma, Y., Wang, M., et al., 2022. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat. Commun. 13, 6940.
    Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., et al., 2021b. Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Res. 31, 2276-2289.
    Zhang, Z., Belcram, H., Gornicki, P., Charles, M., Just, J., Huneau, C., Magdelenat, G., Couloux, A., Samain, S., Gill, B.S., et al., 2011. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl. Acad. Sci. U.S.A. 108, 18737-18742.
    Zhao, F., Tian, S., Wu, Q., Li, Z., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Zou, S., Teng, W., et al., 2022a. Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Commun. 3, 100304.
    Zhao, G., Zou, C., Li, K., Wang, K., Li, T., Gao, L., Zhang, X., Wang, H., Yang, Z., Liu, X., et al., 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat.Plants 3, 946-955.
    Zhao, J., Xie, Y., Kong, C., Lu, Z., Jia, H., Ma, Z., Zhang, Y., Cui, D., Ru, Z., Wang, Y., et al., 2023a. Centromere repositioning and shifts in wheat evolution. Plant Commun., 100556.
    Zhao, J., Zheng, X., Qiao, L., Yang, C., Wu, B., He, Z., Tang, Y., Li, G., Yang, Z., Zheng, J., et al., 2022b. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). Plant J. 112, 1447-1461.
    Zhao, L., Yang, Y., Chen, J., Lin, X., Zhang, H., Wang, H., Wang, H., Bie, X., Jiang, J., Feng, X., et al., 2023b. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 7.
    Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al., 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278-284.
    Zhao, X., Fu, X., Yin, C.,Lu, F., 2021a. Wheat speciation and adaptation:perspectives from reticulate evolution. aBIOTECH 2, 386-402.
    Zhao, X., Guo, Y., Kang, L., Yin, C., Bi, A., Xu, D., Zhang, Z., Zhang, J., Yang, X., Xu, J., et al., 2023c. Population genomics unravels the Holocene history of bread wheat and its relatives. Nat. Plants 9, 403-419.
    Zhao, Y., Thorwarth, P., Jiang, Y., Philipp, N., Schulthess, A.W., Gils, M., Boeven, P.H.G., Longin, C.F.H., Schacht, J., Ebmeyer, E., et al., 2021b. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106.
    Zhao, Y., Xie, P., Guan, P., Wang, Y., Li, Y., Yu, K., Xin, M., Hu, Z., Yao, Y., Ni, Z., et al., 2019. Btr1-A induces grain shattering and affects spike morphology and yield-related traits in wheat. Plant Cell Physiol. 60, 1342-1353.
    Zhou, X., Yu, J., Spengler, R.N., Shen, H., Zhao, K., Ge, J., Bao, Y., Liu, J., Yang, Q., Chen, G., et al., 2020a. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 6, 78-87.
    Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., et al., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774-786.
    Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.-g., et al., 2020b. Triticum population sequencing provides insights into wheat adaptation.Nat. Genet. 52, 1412-1422.
  • 加载中
计量
  • 文章访问数:  212
  • HTML全文浏览量:  102
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-07-29
  • 网络出版日期:  2023-08-22

目录

    /

    返回文章
    返回