留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes

Guiqi Bi Xinxin Luan Jianbin Yan

Guiqi Bi, Xinxin Luan, Jianbin Yan. ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.006
引用本文: Guiqi Bi, Xinxin Luan, Jianbin Yan. ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.006
Guiqi Bi, Xinxin Luan, Jianbin Yan. ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.006
Citation: Guiqi Bi, Xinxin Luan, Jianbin Yan. ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.006

ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes

doi: 10.1016/j.jgg.2023.08.006
基金项目: 

We sincerely thank the editors and reviewers for their valuable suggestions and comments on this study. This work was supported by the National Key R&D Program of China (2018YFA0903200), and Science Technology and Innovation Commission of Shenzhen Municipality of China (ZDSYS 20200811142605017). It was also supported by Innovation Program of Chinese Academy of Agricultural Sciences and the Elite Young Scientists Program of CAAS.

详细信息
    通讯作者:

    Guiqi Bi, Email addresses:biguiqi@caas.cn

    Jianbin Yan, Email addresses:jianbinlab@caas.cn

ORPA: a fast and efficient phylogenetic analysis method for constructing genomewide alignments of organelle genomes

Funds: 

We sincerely thank the editors and reviewers for their valuable suggestions and comments on this study. This work was supported by the National Key R&D Program of China (2018YFA0903200), and Science Technology and Innovation Commission of Shenzhen Municipality of China (ZDSYS 20200811142605017). It was also supported by Innovation Program of Chinese Academy of Agricultural Sciences and the Elite Young Scientists Program of CAAS.

  • 摘要:

    Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually, a process that can be time-consuming and prone to errors. The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations. The processing of a large number of sequences, however, remains a time- consuming task. To conquer this challenge, we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis (ORPA). ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST, completing the task in just one minute. With increasing data volume, the efficiency of ORPA is even more pronounced, over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes. The phylogenetic tree outputs from ORPA are equivalent to HomBlocks, indicating its outstanding efficiency. Due to its speed and accuracy, ORPA can identify species- level evolutionary conflicts, providing valuable insights into evolutionary cognition.

  • Bi, G., Mao, Y., Xing, Q., Cao, M., 2018. HomBlocks:a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110, 18-22.
    Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
    Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552.
    Contreras-Moreira, B., Vinuesa, P., 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696-7701.
    Criscuolo, A., Gribaldo, S., 2010. BMGE (Block Mapping and Gathering with Entropy):a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210.
    Darling, A.C.E., Mau, B., Blattner, F.R., Perna, N.T., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403.
    Dress, A.W., Flamm, C., Fritzsch, G., Grunewald, S., Kruspe, M., Prohaska, S.J., Stadler, P.F., 2008. Noisy:identification of problematic columns in multiple sequence alignments. Algorithms Mol. Biol. 3, 7.
    Gibb, G.C., Condamine, F.L., Kuch, M., Enk, J., Moraes-Barros, N., Superina, M., Poinar, H.N., Delsuc, F., 2016. Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living Xenarthrans. Mol. Biol. Evol. 33, 621-642.
    Hong-Wa, C., Dupin, J., Frasier, C., Schatz, G., Besnard, G., 2023. Systematics and biogeography of Oleaceae subtribe Schreberinae, with recircumscription and revision of its Malagasy members. Bot. J. Linn. Soc. 4, 476-509.
    Li, H.T., Luo, Y., Gan, L., Ma, P.F., Gao, L.M., Yang, J.B., Cai, J., Gitzendanner, M.A., Fritsch, P.W., Zhang, T., et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 1-13.
    Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470.
    McGinnis, S., Madden, T.L., 2004. BLAST:at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20-W25.
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542.
    Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit:A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One 11, e0163962.
    Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
    The Angiosperm Phylogeny, G., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20.
    Wallander, E., Albert, V.A., 2000. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot. 87, 1827-1841.
    Xia, Z., Wen, J., Gao, Z., 2019. Does the Enigmatic Wightia Belong to Paulowniaceae (Lamiales)? Front. Plant Sci. 10, 528.
    Zhang, D., Li, K., Gao, J., Liu, Y., Gao, L.-Z., 2016. The Complete Plastid Genome Sequence of the Wild Rice Zizania latifolia and Comparative Chloroplast Genomics of the Rice Tribe Oryzeae, Poaceae. Front. Ecol. Evol. 4, 88.
  • 加载中
计量
  • 文章访问数:  112
  • HTML全文浏览量:  51
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-08-19
  • 网络出版日期:  2023-08-25

目录

    /

    返回文章
    返回