留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Insights into plant salt stress signaling and tolerance

Huapeng Zhou Haifan Shi Yongqing Yang Xixian Feng Xi Chen Fei Xiao Honghui Lin and Yan Guo

Huapeng Zhou, Haifan Shi, Yongqing Yang, Xixian Feng, Xi Chen, Fei Xiao, Honghui Lin, and Yan Guo. Insights into plant salt stress signaling and tolerance[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.007
引用本文: Huapeng Zhou, Haifan Shi, Yongqing Yang, Xixian Feng, Xi Chen, Fei Xiao, Honghui Lin, and Yan Guo. Insights into plant salt stress signaling and tolerance[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.007
Huapeng Zhou, Haifan Shi, Yongqing Yang, Xixian Feng, Xi Chen, Fei Xiao, Honghui Lin, and Yan Guo. Insights into plant salt stress signaling and tolerance[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.007
Citation: Huapeng Zhou, Haifan Shi, Yongqing Yang, Xixian Feng, Xi Chen, Fei Xiao, Honghui Lin, and Yan Guo. Insights into plant salt stress signaling and tolerance[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.007

Insights into plant salt stress signaling and tolerance

doi: 10.1016/j.jgg.2023.08.007
基金项目: 

We sincerely apologize to authors for not being able to cite their works in this review due to space limitations. We thank Dr. Liang Ma and Dr. Jianfang Li from China Agricultural University for critical reading the manuscript and their essential suggestions. We thank Dr. Siyu Chen from Sichuan University for polishing the language of our manuscript. This work was supported by National Natural Science Foundation of China (Grant 32170295 to H.Z), the National Key R&D Program of China (Grant 2022YFA1303400 to Y.G.), the Fundamental Research Funds for the Central Universities (Grant KYZZ2023004 to H.S.) and the Institutional Research Fund of Sichuan University (Grant 2020SCUNL212 to H.L.).

详细信息
    通讯作者:

    Huapeng Zhou,Email adddresses:zhouhuapeng@scu.edu.cn

Insights into plant salt stress signaling and tolerance

Funds: 

We sincerely apologize to authors for not being able to cite their works in this review due to space limitations. We thank Dr. Liang Ma and Dr. Jianfang Li from China Agricultural University for critical reading the manuscript and their essential suggestions. We thank Dr. Siyu Chen from Sichuan University for polishing the language of our manuscript. This work was supported by National Natural Science Foundation of China (Grant 32170295 to H.Z), the National Key R&D Program of China (Grant 2022YFA1303400 to Y.G.), the Fundamental Research Funds for the Central Universities (Grant KYZZ2023004 to H.S.) and the Institutional Research Fund of Sichuan University (Grant 2020SCUNL212 to H.L.).

  • 摘要: Soil salinization is an essential environmental stressor, threating agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome- mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
  • Alemán, F., Caballero, F., Ródenas, R., Rivero, R.M., Martínez, V., Rubio, F., 2014. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression. Front. Plant Sci. 5, 430.
    Allu, A.D., Soja, A.M., Wu, A., Szymanski, J., Balazadeh, S., 2014. Salt stress and senescence:identification of cross-talk regulatory components. J. Exp. Bot. 65, 3993-4008.
    An, J., Hu, P., Li, F., Wu, H., Shen, Y., White, J.C., Tian, X., Li, Z., Giraldo, J.P., 2020. Emerging investigator series:molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano 7, 2214-2228.
    Apse, M., Blumwald, E., 2002. Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13, 146-150.
    Apse, M.P., Blumwald, E., 2007. Na+ transport in plants. FEBS Lett. 581, 2247-2254.
    Ashraf, M., Shahzad, S.M., Imtiaz, M., Rizwan, M.S., Arif, M.S., Kausar, R., 2018. Nitrogen nutrition and adaptation of glycophytes to saline environment:a review. Arch. Agron. Soil. Sci. 64, 1181-1206.
    Bagheri, M., Gholami, M., Baninasab, B., 2019. Hydrogen peroxide-induced salt tolerance in relation to antioxidant systems in pistachio seedlings. Sci. Hortic. 243, 207-213.
    Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233-266.
    Banerjee, A., Sarkar, S., Cuadros, Orellana, S., Bandopadhyay, R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress:The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. Microorganisms in Saline Environments:Strategies and Functions, 133-153.
    Barnawal, D., Bharti, N., Pandey, S.S., Pandey, A., Chanotiya, C.S., Kalra, A., 2017. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol. Plant 161, 502-514.
    Barragan, V., Lei, di, E.O., Andres, Z., Rubio, L., De, Luca, A., Fernandez, J.A., Cubero, B., Pardo, J.M., 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127-1142.
    Barrero, J.M., Rodriguez, P.L., Quesada, V., Piqueras, P., Ponce, M.R., Micol, J.L., 2006. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ. 29, 2000-2008.
    Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oi, ki, S., Yamada, K., Cellier, F., 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004-2014.
    Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431-434.
    Blumwald, E., Aharon, G.S., Apse, M.P., 2000. Sodium transport in plant cells. B.B.A. Biomembranes 1465, 140-151.
    Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., Tyerman, S.D., 2017. Chloroplast function and ion regulation in plants growing on saline soils:lessons from halophytes. J. Exp. Bot. 68, 3129-3143.
    Boursiac, Y., Chen, S., Luu, D.T., Sorieul, M., van, den, Dries, N., Maurel, C., 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790-805.
    Brookbank, B.P., Patel, J., Gazzarrini, S., Nambara, E., 2021. Role of basal ABA in plant growth and development. Genes 12, 1936.
    Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.
    Cao, Y., Liang, X., Yin, P., Zhang, M., Jiang, C., 2019. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytol. 222, 301-317.
    Cellier, F., Conéjéro, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., Casse, F., 2004. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J. 39, 834-846.
    Chakraborti, S., Bera, K., Sadhukhan, S., Dutta, P., 2022. Bio-priming of seeds:Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress 3, 100052.
    Chaumont, F., Tyerman, S.D., 2014. Aquaporins:highly regulated channels controlling plant water relations. Plant Physiol. 164, 1600-1618.
    Chaves, M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551-560.
    Chen, C., He, G., Li, J., Perez-Hormaeche, J., Becker, T., Luo, Met, al., 2023. A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion. EMBO J. 22, e113004.
    Chen, K., Gao, J., Sun, S., Zhang, Z., Yu, B., Li, J., Xie, C., Li, G., Wang, P., Song, C-P., 2020. BONZAI proteins control global osmotic stress responses in plants. Curr. Bio. 30, 4815-4825.
    Chen, Y.E., Mao, J.J., Sun, L.Q., Huang, B., Ding, C.B., Gu, Y., Liao, J.Q., Hu, C., Zhang, Z.W., Yuan, S., Yuan, M., 2018. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant 164, 349-363.
    Cheng, P., Zhang, Y., Wang, J., Guan, R., Pu, H., Shen, W., 2022. Importance of hydrogen sulfide as the molecular basis of heterosis in hybrid Brassica napus:A case study in salinity response. Environ. Exp. Bot. 193, 104693.
    Che, Othman, M.H., Jacoby, R.P., Millar, A.H., Taylor, N.L., 2020. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 225, 1166-1180.
    Chialva, M., Lanfranco, L., Bonfante, P., 2022. The plant microbiota:composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135-142.
    Chiluwal, A., Bheemanahalli, R., Perumal, R., Asebedo, A., Bashir, E., Lamsal, A., et al., 2018. Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in Sorghum. Field Crops Res. 227, 1-10.
    Choi, W.G., Toyota, M., Kim, S.H., Hilleary R, Gilroy, S., 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. U.S.A. 111, 6497-6502.
    Christou, A., Manganaris, G.A., Papadopoulos, I., Fotopoulos, V., 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 64, 1953-1966.
    Corpas, F.J., Del, Río, L.A., Palma, J.M., 2019. Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Integr. Plant Biol. 61, 803-816.
    Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., Tari, I., 2014. Glutathione transferase supergene family in tomato:salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol. Bioch. 78, 15-26.
    Dastogeer, K.M., Tumpa, F.H., Sultana, A., Akter, M.A., Chakraborty, A., 2020. Plant microbiome-an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23, 100161.
    Davenport, R.J., Muñoz, Mayor, A., Jha, D., Essah, PA., Rus, A., Tester, M., 2007. Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497-507.
    De, Sousa, Lopes, L., Prisco, J.T., Gomes, Filho, E., 2018. Inducing salt tolerance in castor bean through seed priming. Aust. J. Crop Sci. 12.
    Demidchik, V., Maathuis, F.J., 2007. Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development. New Phytol. 175, 387-404.
    Demidchik, V., Tester, M., 2002. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128, 379-387.
    Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T.A., Pottosin, I., 2018. Calcium transport across plant membranes:mechanisms and functions. New Phytol. 220, 49-69.
    Deng, P., Jing, W., Cao, C., Sun, M., Chi, W., Zhao, S., et al., 2022. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proc. Natl. Acad. Sci. U. S. A. 119, e2210338119.
    Ding, P., Ding, Y., 2020. Stories of salicylic acid:a plant defense hormone. Trends Plant Sci. 25, 549-565.
    Doblas, V.G., Geldner, N., Barberon, M., 2017. The endodermis, a tightly controlled barrier for nutrients. Curr. Opin. Plant Biol. 39, 136-143.
    Dodd, I.C., Perez, Alfocea, F., 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63, 3415-3428.
    Does, D.V.D., Boutrot, F., Engelsdorf, T., Rhodes, J., Zipfel, C., 2017. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PloS Genet. 13, e1006832.
    Dos, Santos, Araújo, G., de, Oliveira, Paula-Marinho, S., de, Paiva, Pinheiro, S.K., de, Castro, Miguel, E., de, Sousa, Lopes, L., Camelo, Marques, E., de, Carvalho, H.H., Gomes-Filho, E., 2021. H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. Plant Sci. 303, 110774.
    Du, J., Huang, Y., Xi, J., Cao, M., Ni, W., Chen, X., et al., 2008. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 56, 653-664.
    Duan, L., Dietrich, D., Ng, C., Chan, P., Bhalerao, R., Bennett, M., Dinneny, J., 2013. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25, 324-341.
    Duan, L., Sebastian, J., Dinneny, J.R., 2015. Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods. Mol. Biol. 1242, 105-122.
    Duarte, B., Sleimi, N., Caçador, I., 2014. Biophysical and biochemical constraints imposed by salt stress:learning from halophytes. Front Plant Sci. 5, 746.
    Dunlap, J.R., Binzel, M.L., 1996. NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol. 112, 379-384.
    Eichmann, R., Richards, L., Schäfer, P., 2021. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518-541.
    Essah, Pauline, A., Davenport, Romola, Tester, Mark, 2003. Sodium influx and accumulation in Arabidopsis. Plant Physiol. 133, 307-318.
    Evans, M.J., Choi, W.G., Gilroy, S., Morris, R.J., 2016. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol. 171, 1771-1784.
    Fatma, M., Iqbal, N., Gautam, H., Sehar, Z., Sofo, A., D'Ippolito, I., Khan, N.A., 2021. Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress. Plants 10, 180.
    Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Maman, J., Steinhorst, L., Schmitz-Thom, I., 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666-675.
    Feki, K., Quintero, F.J., Pardo, J.M., Masmoudi, K., 2011. Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol. Biol. 76, 545-556.
    Figueiredo, M.V., Burity, H.A., Martinez, C.R., Chanway, C.P., 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182-188.
    Fisarakis, I., Chartzoulakis, K., Stavrakas, D., 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agr. Water Manage. 51, 13-27.
    Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen, K.A., Bych, K., Schulz, A., Shabala, S., Schumaker, K.S., 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617-1634.
    Galvan, Ampudia, C.S., Testerink., 2011. Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 14, 296-302.
    Galvan, Ampudia, C.S., Julkowska, M.M., Darwish, E., Gandullo, J., Korver, R.A., Brunoud, G., Haring, M.A., Munnik, T., Vernoux, T., Testerink, C., 2013. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23, 2044-2050.
    Gao, Z., Gao, S., Li, P., Zhang, Y., Ma, B., Wang, Y., 2021. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. Physiol. Plantarum 172, 162-175.
    Gao, Z., Zhang, J., Zhang, J., Zhang, W., Zheng, L., Borjigin, T., Wang, Y., 2022. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiol. Bioch. 173, 46-58.
    Geng, Y., Wu, R., Wee, C.W., Xie, F., Wei. X., Chan, P.M.Y., Tham, C., Duan, L., Dinneny, J.R., 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25, 2132-2154.
    Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch. 48, 909-930.
    Glass, A., Siddiqi, M., 1985. Nitrate inhibition of chloride influx in Barley:implications for a proposed chloride homeostat, J. Exp. Bot. 36, 556-566.Gohari, G., Alavi, Z., Esfandiari, E., Panahirad, S., Hajihoseinlou, S., Fotopoulos, V., 2020. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol. Plantarum 168, 361-373.
    Golani, Y., Kaye, Y., Gilhar, O., Ercetin, M., Gillaspy, G., Levine, A., 2013. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis. Mol. Plant 6, 1781-1794.
    Gong, Q., Li, S., Zheng, Y., Duan, H., Xiao, F., Zhuang, Y., He, J., Wu, G., Zhao, S., Zhou, H., 2020. SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. Plant J. 102, 1157-1171.
    Gu, D., Andreev, K., Dupre, M.E., 2021. Major trends in population growth around the world. China CDC Weekly 3, 604.
    Guo, K.M., Babourina, O., Christopher, D.A., Borsics, T., Rengel, Z., 2008. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant 134, 499-507.
    Guo, R., Zhao, L., Zhang, K., Lu, H., Bhanbhro, N., Yang, C., 2021. Comparative genomics and transcriptomics of the extreme halophyte Puccinellia tenuiflora provides insights into salinity tolerance differentiation between halophytes and glycophytes. Front Plant Sci. 12, 649001.
    Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Kumar, M., Hasanuzzaman, M., 2022. Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. Int. J. Mol. Sci. 23, 3741.
    Ha, Tran, D.M., Nguyen, T.T.M., Hung, S.H., Huang, E., Huang, C.C., 2021. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants:A review. Int. J. Mol. Sci. 22, 3154.
    Hailu, B., Mehari, H., 2021. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas:A Review. J. Natural Sci. Res. 12, 1-10.
    Halfter, U., Ishitani, M., Zhu, J.K., 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. P. Natl. A. Sci. 97, 3735-3740.
    Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., Goh, T., Sato, M.H., Morita, M.T., Tasaka, M., 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023-2033.
    Hamam, A.M., Coskun, D., Britto, D.T., Plett, D., Kronzucker, H.J., 2019. Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta 249, 1037-1051.
    Hameed, A., Ahmed, M.Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., Nielsen, B.L., 2021. Effects of salinity stress on chloroplast structure and function. Cells 10, 2023.
    Han, X., Yang, Y., 2021. Phospholipids in salt stress response. Plants 10, 2204.
    Han, X., Yang, Y., Wu, Y., Liu, X., Lei, X., Guo, Y., 2017. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. J. Exp. Bot. 68, 2951-2962.
    Hancock, J.T., Whiteman, M., 2016. Hydrogen sulfide signaling:interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci. 1365, 5-14.
    Hao, R., Zhou, W., Li, J., Luo, M., Scheres, B., Guo, Y., 2023. On salt stress, PLETHORA signaling maintains root meristems. Dev. Cell, S1534-5807, 00327-1.
    Haroon, U., Khizar, M., Liaquat, F., Ali, M., Akbar, M., Tahir, K., Batool, S.S., Kamal, A., Chaudhary, H.J., Munis, M.F.H., 2021. Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. J. Plant Growth Regul. 1-14.
    He, X., Mu, R., Cao, W., Zhang, Z., Zhang, J., Chen, S., 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903-916.
    Hewage, K.A.H., Yang, J.F., Wang, D., Hao, G.F., Yang, G.F., Zhu, J.K., 2020. Chemical manipulation of abscisic acid signaling:a new approach to abiotic and biotic stress management in agriculture. Adv. Sci. 7, 2001265.
    Hilker, M., Schmülling, T., 2019. Stress priming, memory, and signalling in plants. Plant Cell Environ. 42, 753-761.
    Hofmann, T., Lowry, G.V., Ghoshal, S., Tufenkji, N., Brambilla, D., Dutcher, J.R., Gilbertson, L.M., Giraldo, J.P., Kinsella, J.M., Landry, M.P., 2020. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416-425.
    Huang, L., He, B., Han, L., Liu, J., Wang, H., Chen, Z., 2017. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total Environ. 601-602, 1097.
    Hussain, S., Hussain, S., Ali, B., Ren, X., Chen, X., Li, Q., Saqib, M., Ahmad, N., 2021. Recent progress in understanding salinity tolerance in plants:Story of Na+/K+ balance and beyond. Plant Physiol. Bioch. 160, 239-256.
    Iglesias, M.J., Terrile, M.C., Windels, D., Lombardo, M.C., Bartoli, C.G., Vazquez, F., Estelle, M., Casalongué, C.A., 2014. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PloS One 9, e107678.
    Iswanto, A.B.B., Shon, J.C., Liu, K.H., Vu, M.H., Kumar, R., Kim, J.Y., 2020. Sphingolipids modulate secretion of glycosylphosphatidylinositol-anchored plasmodesmata proteins and callose deposition. Plant Physiol. 184, 407-420.
    Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., Shabala, S., 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 76, 25-40.
    Jia, W., Zhang, J., Liang, J., 2001. Initiation and regulation of water deficit-induced abscisic acid accumulation in Maize leaves and roots:cellular volume and water relations. J. Exp. Bot. 52, 295-300.
    Jiang, C., Belfield, E.J., Cao, Y., Smith, J.A.C., Harberd, N.P., 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25, 3535-3552.
    Jiang, C., Belfield, E.J., Mithani, A., Visscher, A., Ragoussis, J., Mott, R., Smith, J.A.C., Harberd, N.P., 2012. ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J. 31, 4359-4370.
    Jiang, J.L., Tian, Y., Li, L., Yu, M., Hou, R.P., Ren, X.M., 2019a. H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front. Plant Sci. 10, 678.
    Jiang, Z., Zhou, X., Tao, M., Yuan, F., Liu, L., Wu, F., Wu, X., Xiang, Y., Niu, Y., Liu, F., 2019b. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ Influx. Nature 572, 341-346.
    Jogawat, A., 2019. Osmolytes and their role in abiotic stress tolerance in plants. Molecular Plant Abiotic Stress:Biology and Biotechnology, 91-104.
    Julkowska, M.M., Hoefsloot, H.C., Mol, S., Feron, R., de, Boer, G.J., Haring, M.A., Testerink, C., 2014. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol. 166, 1387-1402.
    Kaldenhoff, R., Ribas, Carbo, M., Sans, J.F., Lovisolo, C., Heckwolf, M., Uehlein, N., 2008. Aquaporins and plant water balance. Plant Cell Environ. 31, 658-666.
    Kaltdorf, Naseem, 2013. How many salicylic acid receptors does a plant cell need? Sci. Signal 6, jc3.
    Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., Lee, Y., 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. U.S.A. 107, 2355-2360.
    Kaplan, B., Sherman, T., Fromm, H., 2007. Cyclic nucleotide-gated channels in plants. FEBS Lett. 581, 2237-46.
    Keisham, M., Mukherjee, S., Bhatla, S.C., 2018. Mechanisms of sodium transport in plants-progresses and challenges. Int. J. Mol. Sci. 19, 647.
    Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A., Knight, M.R., 2000. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23, 267-278.
    Kim, W.Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352.
    Kimber, C., 2000. "Origins of domesticated sorghum and its early diffusion to India and China," in Sorghum:Origin, History, Technology, and Production, eds C. W. Smith and R. A. Frederiksen(New York, NY:John Wiley & Sons), 3-98.
    Knight, H., Trewavas, A.J., Knight, M.R., 1997. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12, 1067-1078.
    Kohei, H. Megumi, N., Katsuhisa, Y., et al., 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023-2033.
    Korver, R.A., van, den. Berg, T., Meyer, A.J., Galvan, Ampudia, C.S., Ten, Tusscher, K.H., Testerink, C., 2020. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ. 43, 143-158.
    Kugler, A., Köhler, B., Palme, K., Wolff, P., Dietrich, P., 2009. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol. 9, 140.
    Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., Verma, J.P., 2020. Plant growth-promoting bacteria:biological tools for the mitigation of salinity stress in plants. Front. Microbiol. 11, 1216.
    Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y., Shinozaki, K., 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. U.S.A. 107, 2361-2366.
    Lakehal, A., Chaabouni, S., Cavel, E., Le, Hir, R., Ranjan, A., Raneshan, Z., Novák, O., Păcurar, D.I., Perrone, I., Jobert, F., 2019. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol. Plant 12, 1499-1514
    Lan, Thi, Hoang, X., Du, Nhi, N.H., Binh, Anh, Thu, N., Phuong, Thao, N., Phan, Tran, L.S., 2017. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr. Genomics 18, 483-497.
    Laohavisit, A., Richards, S.L., Shabala, L., Chen, C., Colaço, R.D., Swarbreck, S.M., Shaw, E., Dark, A., Shabala, S., Shang, Z., 2013. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol. 163, 253-262.
    Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De, Smet, I., Fukaki, H., Beeckman, T., Bennett, M., Laplaze, L., 2013. Lateral root development in Arabidopsis:fifty shades of auxin. Trends Plant Sci. 18, 450-458.
    Lee, S., Masclaux, Daubresse, C., 2021. Current understanding of leaf senescence in rice. Int. J. Mol. Sci. 22, 4515.
    Leng, Q., Mercier, R.W., Hua, B.G., Fromm, H., Berkowitz, G.A., 2002., Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128, 400-410.
    Leshem, Y., Melamed, Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G., Levine, A., 2006. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc. Natl. Acad. Sci. U.S.A. 103, 18008-18013.
    Li, B., Tester, M., Gilliham, M., 2017a. Chloride on the move. Trends Plant Sci. 22, 236-248
    Li, J., Shen, L., Han, X., He, G., Fan, W., Li, Y., Yang, S., Zhang, Z., Yang, Y., Jin, W., Wang, Y., Zhang, W., Guo, Y., 2023. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO j. 42, e11240.
    Li, J., Zhou, H., Zhang, Y., Li, Z., Yang, Y., Guo, Y., 2020. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev. Cell 55, 367-380.
    Li, J., Zhou, X., Wang, Y., Song, S., Ma, L., He, Q., Lu, M., Zhang, K., Yang, Y.Q., Zhao, Q., Jin, W., Jiang, C., Guo, Y., 2023. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J. Genet. Genomics, S1673-8527(23)00097-8.
    Li, L., Wang, F., Yan, P., Jing, W., Zhang, C., Kudla, J., Zhang, W., 2017b. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol. 214, 1172-1187.
    Li, W., Guan, Q., Wang, Z.Y., Wang, Y., Zhu, J., 2013. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. Mol. Plant 6, 1344-1354
    Li, W., Song, T., Wallrad, L., Kudla, J., Wang, X., Zhang, W., 2019. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat. Plants 5, 1012-1021.
    Li, X., Sun, P., Zhang, Y., Jin, C., Guan, C., 2020. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ. Exp. Bot. 174, 104023.
    Li, Y., Hu, J., Qi, J., Zhao, F., Liu, J., Chen, L., Chen, L., Gu, J., Wu, H., Li, Z., 2022. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance. Stress Biology 2, 46.
    Lim, P.O., Kim, H.J., Gil, Nam, H., 2007. Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136.
    Lin, H., Yang, Y., Quan, R., Mendoza, I., Wu, Y., Du, W., Zhao, S., Schumaker, K.S., Pardo, J.M., Guo, Y., 2009. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21, 1607-1619.
    Liu, X., Jiang, W., Li, Y., et al., 2023. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nat. Plants 9, 645-660.
    Liu, L., Song, W., Huang, S., Jiang, K., Moriwaki, Y., Wang, Y., Men, Y., Zhang, D., Wen, X., Han, Z., Chai, J., Guo, H., 2022. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185, 3341-3355.
    Lu, K., Song, R., Guo, J., Zhang, Y., Zuo, J., Chen, H., Liao, C., Hu, X., Ren, F., Lu, Y., Liu, W., 2023. CycC1; 1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. Plant Cell 35, 2570-2591.
    Lu, Y., Yu, M., Jia, Y., Yang, F., Zhang, Y., Xu, X., Li, X., Yang, F., Lei, J., Wang, Y., Yang, G., 2022. Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat. Commun. 13, 5682.
    Lu, Z., Yin, G., Chai, M., Sun, L., Wei, H., Chen, J., Yang, Y., Fu, X., Li, S., 2022. Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance. BMC Genomics 23, 560.
    Lou, L., Yu, F., Tian, M., Liu, G., Wu, Y., Wu, Y., Xia, R., Pardo, J.M., Guo, Y., Xie, Q., 2020. ESCRT-I component VPS23A sustains salt tolerance by strengthening the SOS module in Arabidopsis. Mol. Plant 13, 1134-1148.
    Ma, D.M., Xu, W.R., Li, H.W., Jin, F.X., Guo, L.N., Wang, J., Dai, H.J., Xu, X., 2014. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251, 219-231.
    Ma, L., Han, R., Yang, Y., Liu, X., Li, H., Zhao, X., et al., 2023. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. Plant Cell 35, 2997-3020.
    Ma, L., Ye, J., Yang, Y., Lin, H., Yue, L., Luo, J., Long, Y., Fu, H., Liu, X., Zhang, Y., 2019. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell 48, 697-709.
    Mansour, M.M.F., 2022. Role of Vacuolar Membrane Transport Systems in Plant Salinity Tolerance. J. Plant Growth Regul. 42, 1364-1401.
    Martin, Stpaul, N., Delzon, S., Cochard, H., 2017. Plant resistance to drought depends on timely stomatal closure. Ecol. Let. 20, 1437-1447.
    Marulanda, A., Azcón, R., Chaumont, F., Ruiz, Lozano, J.M., Aroca, R., 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232, 533-543.
    Martínez, Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., Quintero, F.J., 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143, 1001-1012.
    Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., 2002. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. U.S.A. 99, 6428-6433.
    Maurya, A.K., 2020. Oxidative stress in crop plants. Agronomic Crops:Stress Responses and Tolerance 3, 349-380.
    Maxwell, D.P., Wang, Y., McIntosh, L., 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U.S.A. 96, 8271-8276.
    Mazel, A., Leshem, Y., Tiwari, B.S., Levine, A., 2004. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134, 118-128.
    Meng, D., Fricke, W., 2017. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiol. Bioch. 113, 64-77.
    Miller, G., Suzuki, N., Ciftci, Yilmaz, S., Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453-467.
    Mittler, R., Zandalinas, S.I., Fichman, Y., Van, Breusegem, F., 2022. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Bio. 23, 663-679.
    Moradbeygi, H., Jamei, R., Heidari, R., Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272, 109537.
    Morcillo, R.J., Manzanera, M., 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11, 337.
    Mugwanya, M., Kimera, F., Dawood, M., Sewilam, H., 2022. Elucidating the effects of combined treatments of salicylic acid and L-proline on greenhouse-grown cucumber under saline drip irrigation. J. Plant Growth Regul. 42, 1-17.
    Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651-681
    Mushtaq, A., Jamil, N., Riaz, M., Hornyak, G., Ahmed, N., Ahmed, S.S., Shahwani, M.N., Malghani, M.N.K., 2017. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. In:Biol. Forum., 150-157.
    Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2009. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can. J. Microbiol. 55, 302-9.
    Nie, K., Zhao, H., Wang, X., Niu, Y., Zhou, H., Zheng, Y., 2022. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. J. Integr. Plant Biol. 64, 930-941.
    Nieves, Cordones, M., Alemán, F., Martínez, V., Rubio, F., 2010. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol. Plant 3, 326-333.
    Nieves, Cordones, M., Alemán, F., Martínez, V., Rubio, F., 2014. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 171, 688-695.
    Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283, 8885-8892.
    Ohta, M., Guo, Y., Halfter, U., Zhu, J.K., 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. U.S.A. 100, 11771-11776.
    Osman, K.T., 2018. Saline and sodic soils. In:Management of soil problems. Springer International Publishing, Cham, 255-298.
    Pagano, A., Macovei, A., Balestrazzi, A., 2023. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 42, 657-688.
    Paul, S., Roychoudhury, A., 2017. Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene 11, 124-132.
    Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., Kadioglu, A., Shen, G., Zhang, H., 2016. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants. Plant Cell Physiol. 57, 1069-84.
    Pennisi, E., 2009. How sorghum withstands heat and drought. Science 323, 323:573.
    Pérez, Labrada, F., López, Vargas, E.R., Ortega, Ortiz, H., Cadenas, Pliego, G., Benavides, Mendoza, A., Juárez, Maldonado, A., 2019. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 8, 151.
    Peters, C., Kim, S., Devaiah, S., Li, M., Wang, X., 2014. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 37, 2002-2013.
    Pic, E., De, La, Serve, B.T., Tardieu, F., Turc, O., 2002. Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in Pea. Plant Physiol. 128, 236-246.
    Pierzynski, G.M., Vance, G.F., Sims, J.T., 2005. Soils and environmental quality. CRC press.
    Pottosin, I., Dobrovinskaya, O., 2014. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J. Plant Physiol. 171, 732-742.
    Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Drechsel, P., Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Natural Resources Forum 38, 282-295.
    Qiao, W., Fan, L.M., 2008. Nitric oxide signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 50, 1238-1246.
    Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M., Guo, Y., 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19, 1415-1431.
    Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., Huang, R., 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports 7, 44637.
    Quintero, F.J., Martinez, Atienza, J., Villalta, I., Jiang, X., Kim, W.Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.J., Zhu, J.K., 2011. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1(SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 108, 2611-2616.
    Racchi, M.L., 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2, 340-369.
    Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S.A., Kumari, P.H., Punita, D.L., Karumanchi, A.R., Reddy, P. S., Rathnagiri, P., Sreenivasulu, N., 2019. Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. Plant Signaling Molecules. Elsevier, 417-436.
    Rasheed, F., Sehar, Z., Fatma, M., Iqbal, N., Masood, A., Anjum, N.A., Khan, N.A., 2021. Involvement of ethylene in reversal of salt stress by salicylic acid in the presence of sulfur in mustard(Brassica juncea L.). J. Plant Growth Regul. 41, 1-18.
    Rawat, N., Singla, areek, S.L., Pareek, A., 2021. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plantarum 171, 653-676.
    Rayle, D., Cleland, R., 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271-1274.
    Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., Wu, W.H., 2013. Calcineurin B-like protein CBL 10 directly interacts with AKT 1 and modulates K+ homeostasis in Arabidopsis. Plant J. 74, 258-266.
    Rengasamy, P., 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57, 1017-1023.
    Rico, C.M., Peralta, Videa, J., Gardea, Torresdey, J., 2015. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and Plant Sciences:Nanoparticles and their Impact on Plants, 1-17.
    Rodríguez, Navarro, A., Rubio, F., 2006. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57, 1149-1160.
    Rosales, M.A., Franco, Navarro, J.D., Peinado, Torrubia, P., Díaz, Rueda, P., Álvarez, R., Colmenero, Flores, J.M., 2020. Chloride improves nitrate utilization and NUE in plants. Front. Plant Sci. 11, 442.
    Rus, A., Lee, B.h,, Munoz, Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.K., Bressan, R.A., Hasegawa, P.M., 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136, 2500-2511.
    Sagar, A., Rai, S., Ilyas, N., Sayyed, R., Al, Turki, A.I., El, Enshasy, H.A., Simarmata, T., 2022. Halotolerant rhizobacteria for salinity-stress mitigation:Diversity, mechanisms and molecular approaches. Sustainability 14, 490.
    Saharan, B., Nehra, V., 2011. Plant growth promoting rhizobacteria:a critical review. Life Sci. Med. Res. 21, 30.
    Saini, L.K., Singh, N., Pandey, G.K., 2020. Plant protein phosphatase 2C:critical negative regulator of ABA signaling. Protein Phosphatases and Stress Management in Plants:Functional Genomic Perspective, 83-102.
    Samadi, S., Habibi, G., Vaziri, A., 2019. Exogenous trehalose alleviates the inhibitory effects of salt stress in Strawberry plants. Acta Physiol. Plant. 41, 1-11.
    Sánchez, Barrena, M.J., Chaves, Sanjuan, A., Raddatz, N., Mendoza, I., Cortés, Á., Gago, F., González, Rubio, J.M., Benavente, J.L., Quintero, F.J., Pardo, J.M., 2020. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant Physiol. 182, 2143-2153.
    Sapre, S., Gontia, Mishra, I., Tiwari, S., 2022. Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). J. Plant Growth Regul. 41, 647-656.
    Savvides, A., Ali, S., Tester, M., Fotopoulos, V., 2016. Chemical priming of plants against multiple abiotic stresses:mission possible? Trends Plant Sci. 21, 329-340.
    Sechet, J., Htwe, S., Urbanowicz, B., Agyeman, A., Feng, W., Ishikawa, T., Colomes, M., Kumar, K., Kawai, Yamada, M., Dinneny, J., O'Neill, M., Mortimer, J., 2018. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. Plant J. 96, 1036-1050.
    Seo, M., Koshiba, T., 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48.
    Shabala, S., Cuin, T.A., 2008. Potassium transport and plant salt tolerance. Physiol. Plantarum 133, 651-669.
    Shabala, S., Wu, H., Bose, J., 2015. Salt stress sensing and early signalling events in plant roots:Current knowledge and hypothesis. Plant Sci. 241, 109-119.
    Shahid, S.A., Zaman, M., Heng, L., 2018. Soil salinity:historical perspectives and a world overview of the problem. In:Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer International Publishing, Cham, 43-53.
    Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012.
    Shelke, D., Nikalje, G., Nikam, T., Maheshwari, P., Punita, D., Rao, K., Kavi, Kishor, P., Suprasanna, P., 2019. Chloride (Cl-) uptake, transport, and regulation in plant salt tolerance. Molecular Plant Abiotic Stress:Biology and Biotechnology, 241-268.
    Shen, Z.j., Chen, J., Ghoto, K., Hu, W.J., Gao, G.f., Luo, M.R., Li, Z., Simon, M., Zhu, X.Y., Zheng, H.l., 2018. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiol. 38, 1605-1622.
    Shi, H., Ishitani, M., Kim, C., Zhu, J.K., 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. U.S.A. 97, 6896-6901.
    Singh, A., Bhatnagar, N., Pandey, A., Pandey, G.K., 2015. Plant phospholipase C family:regulation and functional role in lipid signaling. Cell Calcium 58, 139-146.
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savouré, A., 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433-447.
    Sofy, M.R., Elhawat, N., Alshaal, T., 2020. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotox. Environ. Safe. 200, 110732
    Song, T., Shi, Y., Shen, L., Cao, C., Shen, Y., Jing, W., Tian, Q., Lin, F., Li, W., Zhang, W., 2021. An endoplasmic reticulum-localized cytochrome b5 regulates high-affinity K+ transport in response to salt stress in rice. Proc. Natl. Acad. Sci. U. S. A. 118, e2114347118.
    Steinhorst, L., He, G., Moore, L.K., Schültke, S., Schmitz, Thom, I., Cao, Y., et al., 2022. A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis. Developmental Cel. 57, 2081-2094.
    Steudle, E., Peterson, C.A., 1998. How does water get through roots? J. Exp. Bot. 49, 775-788.
    Su, Y., Luo, W., Lin, W., Ma, L., Kabir, M.H., 2015. Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants. Biol. Proced. Online 17, 1-13.
    Sun, F., Zhang, W., Hu, H., Li, B., Wang, Y., Zhao, Y., Li, K., Liu, M., Li, X., 2008. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol. 146, 178-188.
    Sun, J., Zhang, X., Deng, S., Zhang, C., Wang, M., Ding, M., Zhao, R., Shen, X., Zhou, X., Lu, C., 2012. Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PloS One 7, e53136.
    Tabatabaei, S., Ehsanzadeh, P., 2016. Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54, 340-350.
    Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi, Shinozaki, K., Shinozaki, K., 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235-238.
    Talebi, Atouei, M., Pourbabaee, A.A., Shorafa, M., 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iran. J. Sci. Technol. A. 43, 2725-2733.
    Talke, I.N., Blaudez, D., Maathuis, F.J., Sanders, D., 2003. CNGCs:prime targets of plant cyclic nucleotide signalling? Trends Plant Sci. 8, 286-93.
    Tan, Y.Q., Yang, Y., Shen, X., Zhu, M., Shen, J., Zhang, W., Hu, H., Wang, Y.F., 2023. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 35, 239-259.
    Tang, R., Yang, Y., Yang, L., Liu, H., Wang, C., Yu, M., Gao, X., Zhang, H., 2014. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ. 37, 573-88.
    Tan, T., Cai, J., Zhan, E., Yang, Y., Zhao, J., Guo, Y., Zhou, H., 2016. Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Plant Mol. Biol. 92, 391-400.
    Tanudjaja, E., Hoshi, N., Yamamoto, K., Ihara, K., Furuta, T., Tsujii, M., Ishimaru, Y., Uozumi, N., 2023.
    Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J. Biol. Chem. 299, 102846.
    Tanveer, M., Shah, A.N., 2017. An insight into salt stress tolerance mechanisms of Chenopodium album. Environ. Sci. Pollut. Res. Int. 24, 16531-16535.
    Tenhaken, R., 2015. Cell wall remodeling under abiotic stress. Front. Plant Sci. 5, 771.
    Tester, M., Davenport, R., 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527.
    Thalmann, M., Santelia, D., 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214, 943-951.
    Thieme, C., Rojas, Triana, M., Stecyk, E., et al., 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025.
    Thomson, S.J., Hansen, A., Sanguinetti, M.C., 2015. Identification of the intracellular Na+ sensor in Slo2.1 potassium channels. J. Biol. Chem.290, 14528-14535.
    Uchiyama, T., Saito, S., Yamanashi, T., Kato, M., Takebayashi, K., Hamamoto, S., et al., 2023. The HKT1 Na+ transporter protects plant fertility by decreasing Na+ content in stamen filaments. Sci. Adv. 9, eadg5495.
    Upadhyay, S., Singh, J., Singh, D., 2011. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21, 214-222.
    Vaishnav, A., Kumari, S., Jain, S., Varma, A., Choudhary, D., 2015. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 119, 539-551.
    Vaishnav, A., Varma, A., Tuteja, N., Choudhary, D.K., 2016. PGPR-mediated amelioration of crops under salt stress. Plant-Microbe Interaction:an Approach to Sustainable Agriculture, 205-226.
    Valenzuela, C.E., Acevedo, Acevedo, O., Miranda, G.S., Vergara, Barros, P., Holuigue, L., Figueroa, C.R., Figueroa, P.M., 2016. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J. Exp. Bot. 67, 4209-4220
    Van, den, Berg, T., Korver, R.A., Testerink, C., Ten, Tusscher, K.H., 2016. Modeling halotropism:a key role for root tip architecture and reflux loop remodeling in redistributing auxin. Development 143, 3350-3362.
    Van, Zelm, E., Zhang, Y., Testerink, C., 2020b. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403-433.
    Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le, Van, A., Dufresne, A., 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196-1206.
    Vanlerberghe, G.C., 2013. Alternative oxidase:a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 14, 6805-6847.
    Verslues, P.E., Batelli, G., Grillo, S., Agius, F., Kim, Y.S., Zhu, J., Agarwal, M., Katiyar, Agarwal, S., Zhu, J.K., 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol. Cell. Biol. 27, 7771-7780.
    Wang, B., Zhang, H., Huai, J., Peng, F., Wu, J., Lin, R., Fang, X., 2022. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18, 1-9.
    Wang, L., Cao, S., Wang, P., Lu, K., Song, Q., Zhao, F.J., Chen, Z.J., 2021. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc. Natl. Acad. Sci. U. S. A. 118, e202398111.
    Wang, M., Zheng, Q., Shen, Q., Guo, S., 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370-7390.
    Wang, Y., Fang, Z., Yang, L., Chan, Z., 2021. Transcriptional variation analysis of Arabidopsis ecotypes in response to drought and salt stresses dissects commonly regulated networks. Physiol. Plantarum 172, 77-90.
    Wang, Y., He, L., Li, H.D., Xu, J., Wu, W.H., 2010. Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res. 20, 826-837.
    Wang, Y., Li, K., Li, X., 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 166, 1637-1645.
    Wani, A.S., Ahmad, A., Hayat, S., Tahir, I., 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol. Biochem. 135, 385-394.
    Wei, H., Wang, X., He, Y., Xu, H., Wang, L., 2021. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J. 40, e105086.
    Wen, Z., Tyerman, S.D., Dechorgnat, J., Ovchinnikova, E., Dhugga, K.S., Kaiser, B.N., 2017. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell 29, 2581-2596.
    Xiao, F., Zhou, H., 2022. Plant salt response:Perception, signaling, and tolerance. Front. Plant Sci. 13, 1053699.
    Xu, S.L., Rahman, A., Baskin, T.I., Kieber, J.J., 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 3065-3079.
    Yan, J., Liu, Y., Yang, L., He, H., Huang, Y., Fang, L., Scheller, H.V., Jiang, M., Zhang, A., 2021. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Mol. Plant 14, 411-425.
    Yancey, P., Clark, M., Hand, S., Bowlus, R., Somero, G., 1982. Living with water stress:evolution of osmolyte systems. Science 217, 1214-1222.
    Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., Yang, C., 2014. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss. Org. 117, 99-112.
    Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., Gong, Z., 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2, 22-31.
    Yang, Y., Guo, Y., 2018a. Unraveling salt stress signaling in plants. J. Integr. Plant Biol 60, 796-804.
    Yang, Y., Guo, Y., 2018b. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523-539.
    Yang, Y., Han, X., Ma, L., Wu, Y., Liu, X., Fu, H., Liu, G., Lei, X., Guo, Y., 2021. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Mol. Plant 14, 2000-2014.
    Yang, Y., Yao, Y., Li, J., Zhang, J., Zhang, X., Hu, L., Ding, D., Bakpa, E.P., Xie, J., 2022. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front Plant Sci. 13, 623.
    Yang, Z., Wang, C., Xue, Y., Liu, X., Chen, S., Song, C., Yang, Y., Guo, Y., 2019a. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10, 1199.
    Yao, H., Xue, H., 2018. Phosphatidic acid plays key roles regulating plant development and stress responses. J. Integr. Plant Biol. 60, 851-863.
    Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 61, 1673-1689.
    Yildirim, E., Turan, M., Guvenc, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nut. 31, 593-612.
    Yin, P., Liang, X., Zhao, H., Xu, Z., Chen, L., Yang, X., et al., 2023. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize. Mol. Plant 16, 1031-1047.
    Yu, B., Zheng, W., Xing, L., Zhu, J.K., Persson, S., Zhao, Y., 2022. Root twisting drives halotropism via stress-induced microtubule reorientation. Dev. Cell 57, 2412-2425.
    Yu, J., Zhu, C., Xuan, W., An, H., Tian, Y., Wang, B., Chi, W., Chen, G., Ge, Y., Li, J., Dai, Z., Liu, Y., Sun, Z., Xu, D., Wang, C., Wan, J., 2023. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 14, 3550.
    Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Xiao, Y., Liang, Y., Zhang, W., 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762-773.
    Yu, Y., Zhang, H., Xing, H., Cui, N., Liu, X., Meng, X., Wang, X., Fan, L., Fan, H., 2021. Regulation of growth and salt resistance in cucumber seedlings by hydrogen-rich water. J. Plant Growth Regul., 1-20.
    Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371.
    Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J.M., Shen. Q., 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci. Rep. 5, 1-8.
    Zahedi, S.M., Hosseini, M.S., Naghmeh, D., Abadía, J., Germ, M., Gholami, R., Abdelrahman, M., 2022. Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers. Agri. Water Manage. 261.
    Zelm, E., Zhang, Y., Testerink, C., 2020. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 71, 403-433.
    Zepeda, Jazo, I., Velarde, Buendía, A.M., Enríquez, Figueroa, R., Bose, J., Shabala, S., Muñiz, Murguía, J., 2011. Pottosin II Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol. 157, 2167-2180.
    Zhan, Q., Shen, J., Nie, K., Zheng, Y., 2023. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis. Plant Sci. 332, 111717.
    Zhang, F., Li, L., Jiao, Z., Chen, Y., Liu, H., Chen, X., Fu, J., Wang, G., Zheng, J., 2016. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci. 253, 118-129.
    Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., et al., 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379, eade8416.
    Zhang, H., Zhu, J., Gong, Z., Zhu, J.K., 2022a. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104-119.
    Zhang, M., Liang, X., Wang, L., Cao, Y., Song, W., Shi, J., Lai, J., Jiang, C., 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants 5, 1297-1308.
    Zhang, M., Li, Y., Liang, X., Lu, M., Lai, J., Song, W., Jiang, C., 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnol. J. 21, 97-108.
    Zhang, Q., Lin, F., Mao, T., Nie, J., Yan, M., Yuan, M., Zhang, W., 2012. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555-4576.
    Zhang, X., Zhang, L., Ma, C., Su, M., Wang, J., Zheng, S., Zhang, T., 2022b. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Sci. Hortic. 297, 110962.
    Zhang, Y., Hou, K., Qian, H., Gao, Y., Fang, Y., Xiao, S., Tang, S., Zhang, Q., Qu, W., Ren, W., 2022c. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. The Sci. Total Environ.837, 155808.
    Zhang, Y., Xu, Y., Skaggs, T.H., Ferreira, J.F.S., Chen, X., Sandhu, D., 2023. Plantphase extraction:a method for enhanced discovery of the RNA-binding proteome and its dynamics in plants. Plant Cell 35, 2750-2772.
    Zhang, Z., Zhang, S., Zhang, Y., Wang, X., Li, D., Li, Q., Yue, M., Li, Q., Zhang, Y.E., Xu, Y., 2011. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23, 396-411.
    Zhao, B., Liu, Q., Wang, B., Yuan, F., 2021a. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 69, 3566-3584.
    Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., Li, Y., Xie, S., Li, Y., Long, T., 2021b. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl. Sci. Rev. 8, nwaa149.
    Zhao, C., Zayed, O., Yu, Z., Jiang, W., Zhu, P., Hsu, C.C., Zhang, L., Tao, W.A., Lozano, Durán, R., Zhu, J.K., 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, 13123-13128.
    Zhao, C., Zhang, H., Song, C., Zhu, J.K., Shabala, S., 2020. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation Camb. 1, 100017.
    Zhao, G., Cheng, P., Zhang, T., Abdalmegeed, D., Xu, S., Shen, W., 2021c. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotox. Environ. Safe. 224, 112640.
    Zhao, H., Li, Z., Wang, Y., Wang, J., Xiao, M., Liu, H., Quan, R., Zhang, H., Huang, R., Zhu, L., Zhang, Z., 2022. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnol. J. 20, 468-484.
    Zheng, Y., Chen, Z., Ma, L., Liao, C., 2018. The Ubiquitin E3 Ligase RHA2b Promotes Degradation of MYB30 in Abscisic Acid Signaling. Plant Physiol. 178, 428-440.
    Zhou, H., Lin, H., Chen, S., Becker, K., Yang, Y., Zhao, J., Kudla, J., Schumaker, K.S., Guo,Y., 2014.Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. The Plant Cell 26, 1166-1182.
    Zhou, H., Xiao, F., Zheng, Y., Liu, G., Zhuang, Y., Wang, Z., Zhang, Y., He, J., Fu, C., Lin, H., 2022a. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. Plant Cell 34, 927-944.
    Zhou, X., Li, J., Wang, Y., Liang, X., Zhang, M., Lu, M., Guo, Y., Qin, F., Jiang, C., 2022b. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236, 479-494.
    Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell 167, 313-324.
    Zhu, J.K., 2003.Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441-445.
    Zhu, M., Li, Q., Zhang, Y., Zhang, M., Li, Z., 2022. Glycine betaine increases salt tolerance in maize (Zea mays L.) by regulating Na+ homeostasis. Front. Plant Sci. 13, 978304.
    Zulfiqar, F., 2021. Effect of seed priming on horticultural crops. Scientia Horticulturae 286:110197
    Zulfiqar, F., Akram, N.A., Ashraf, M., 2020. Osmoprotection in plants under abiotic stresses:New insights into a classical phenomenon. Planta 251, 1-17.
    Zulfiqar, F., Nafees, M., Chen, J., Darras, A., Ferrante, A., Hancock, J.T., Ashraf, M., Zaid, A., Latif, N., Corpas, F.J., 2022. Chemical priming enhances plant tolerance to salt stress. Front. Plant Sci. 13, 946922.
    Zwiewka, M., Nodzyński, T., Robert, S., Vanneste, S., Friml, J., 2015. Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana. Mol. Plant 8, 1175-1187.
  • 加载中
计量
  • 文章访问数:  303
  • HTML全文浏览量:  150
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-08-21
  • 网络出版日期:  2023-08-29

目录

    /

    返回文章
    返回