留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust

Yan Yan Xiao-Ming Li Yun Chen Tian-Tian Wu Ci-Hang Ding Mei-Qi Zhang YueTing Guo Chu-Yang Wang Junli Zhang Xuebin Zhang Awais Rasheed Shengchun Xu Meng-Lu Wang Zhongfu Ni Qixin Sun Jin-Ying Gou

Yan Yan, Xiao-Ming Li, Yun Chen, Tian-Tian Wu, Ci-Hang Ding, Mei-Qi Zhang, YueTing Guo, Chu-Yang Wang, Junli Zhang, Xuebin Zhang, Awais Rasheed, Shengchun Xu, Meng-Lu Wang, Zhongfu Ni, Qixin Sun, Jin-Ying Gou. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.009
引用本文: Yan Yan, Xiao-Ming Li, Yun Chen, Tian-Tian Wu, Ci-Hang Ding, Mei-Qi Zhang, YueTing Guo, Chu-Yang Wang, Junli Zhang, Xuebin Zhang, Awais Rasheed, Shengchun Xu, Meng-Lu Wang, Zhongfu Ni, Qixin Sun, Jin-Ying Gou. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.009
Yan Yan, Xiao-Ming Li, Yun Chen, Tian-Tian Wu, Ci-Hang Ding, Mei-Qi Zhang, YueTing Guo, Chu-Yang Wang, Junli Zhang, Xuebin Zhang, Awais Rasheed, Shengchun Xu, Meng-Lu Wang, Zhongfu Ni, Qixin Sun, Jin-Ying Gou. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.009
Citation: Yan Yan, Xiao-Ming Li, Yun Chen, Tian-Tian Wu, Ci-Hang Ding, Mei-Qi Zhang, YueTing Guo, Chu-Yang Wang, Junli Zhang, Xuebin Zhang, Awais Rasheed, Shengchun Xu, Meng-Lu Wang, Zhongfu Ni, Qixin Sun, Jin-Ying Gou. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.009

Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust

doi: 10.1016/j.jgg.2023.08.009
基金项目: 

We appreciate Prof. Jorge Dubcovsky at UC Davis for sharing the ProUbi::TAP-WKS1.1 and ProNP::WKS1 transgenic lines. This study was supported by the National Natural Science Foundation of China (32372557 and 31972350), the China Postdoctoral Science Foundation (2021M700850), an open project of the State Key Laboratory of Crop Stress Adaptation and Improvement at Henan University, and the Central Government guided Local Science and Technology Development Funds (2023ZY1016).

详细信息
    通讯作者:

    Jin-Ying Gou, jygou@cau.edu.cn

Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust

Funds: 

We appreciate Prof. Jorge Dubcovsky at UC Davis for sharing the ProUbi::TAP-WKS1.1 and ProNP::WKS1 transgenic lines. This study was supported by the National Natural Science Foundation of China (32372557 and 31972350), the China Postdoctoral Science Foundation (2021M700850), an open project of the State Key Laboratory of Crop Stress Adaptation and Improvement at Henan University, and the Central Government guided Local Science and Technology Development Funds (2023ZY1016).

  • 摘要:

    Wheat (Triticum aestivum) is one of the most essential human energy and protein sources. However, wheat production is threatened by devastating fungal diseases, such as stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici(Pst). Here, we reveal that the alternations in chloroplast lipid profiles and the accumulation of jasmonate (JA) in the necrosis region activate JA signaling and trigger the host defense. The collapse of chloroplasts in the necrosis region results in accumulations of polyunsaturated membrane lipids and the lipid-derived phytohormone, JA, in transgenic lines of Yr36 that encodes Wheat Kinase START 1 (WKS1), a high-temperature-dependent adultplant resistance protein. WKS1.1, a protein encoded by a full-length splicing variant of WKS1, phosphorylates and enhances the activity of keto-acyl thiolase (KAT-2B), a critical enzyme catalyzing the β-oxidation reaction in JA biosynthesis. The premature stop mutant, kat-2b, accumulates less JA and shows defects in the host defense against Pst. Conversely, over-expression of KAT-2B results in a higher level of JA and limits the growth of Pst. Moreover, JA inhibits the growth and reduces pustule densities of Pst. This study illustrates the WKS1.1-KAT-2B-JA pathway enhancing wheat defense against fungal pathogens to attenuate yield loss.

  • An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., et al., 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc Natl Acad Sci U S A 114, E8930-e8939.
    Ayliffe, M., Devilla, R., Mago, R., White, R., Talbot, M., Pryor, A., Leung, H., 2011. Nonhost resistance of rice to rust pathogens. Mol Plant Microbe Interact 24, 1143-1155.
    Beddow, J.M., Pardey, P.G., Chai, Y., Hurley, T.M., Kriticos, D.J., Braun, H.J., Park, R.F., Cuddy, W.S., Yonow, T., 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 1, 15132.
    Chen, W., Wellings, C., Chen, X., Kang, Z., Liu, T., 2014. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15, 433-446.
    Chen, X.M., 2005. Epidemiology and control of stripe rust[Puccinia striiformis f. sp. tritici] on wheat.Canadian Journal of Plant Pathology 27, 314-337.
    Chen, Y., Yan, Y., Wu, T.T., Zhang, G.L., Yin, H., Chen, W., Wang, S., Chang, F., Gou, J.Y., 2020. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nat Commun 11, 6266.
    Du, M., Zhao, J., Tzeng, D.T.W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., et al., 2017. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates JasmonateMediated Plant Immunity in Tomato. Plant Cell 29, 1883-1906.
    Förderer, A., Li, E., Lawson, A.W., Deng, Y.N., Sun, Y., Logemann, E., Zhang, X., Wen, J., Han, Z., Chang, J., et al., 2022. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532-539.
    Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., Dubcovsky, J., 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust.Science 323, 1357-1360.
    Fujikawa, Y., Kato, N., 2007. Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J 52, 185-195.
    Gou, J.Y., Li, K., Wu, K., Wang, X., Lin, H., Cantu, D., Uauy, C., Dobon-Alonso, A., Midorikawa, T., Inoue, K., et al., 2015. Wheat Stripe Rust Resistance Protein WKS1 Reduces the Ability of the Thylakoid-Associated Ascorbate Peroxidase to Detoxify Reactive Oxygen Species. Plant Cell 27, 1755-1770.
    He, P., Shan, L., Sheen, J., 2007. The use of protoplasts to study innate immune responses. Methods in Molecular Biology 354, 1-9.
    Hovmoller, M.S., Walter, S., Bayles, R.A., Hubbard, A., Flath, K., Sommerfeldt, N., Leconte, M., Czembor, P., Rodriguez-Algaba, J., Thach, T., et al., 2016. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region.PLANT PATHOLOGY 65, 402-411.
    Jin, X., Gou, J.Y., 2016. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation. Plant Methods 12, 43.
    Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B., 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360-1363.
    Li, Q.P., Wang, S., Gou, J.Y., 2017. A split ubiquitin system to reveal topology and released peptides of membrane proteins. BMC Biotechnol 17, 69.
    Li, W., Zhou, F., Liu, B., Feng, D., He, Y., Qi, K., Wang, H., Wang, J., 2011. Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acid reductase gene family in rice. Plant Cell Rep 30, 981-995.
    Li, X.M., Wang, C.Y., Guo, Y.T., Guo, Y.X., Du, H.X., Niu, K.X., Yan, Y., Gou, J.Y., 2022. Hormoneresponse transcriptional landscapes of wheat seedlings and the development of a JA fluorescent reporter. Plant Cell Environ 45, 3604-3610.
    Moore, J.W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., et al., 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47, 1494-1498.
    Ngou, B.P.M., Ahn, H.K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
    Nguyen, T.H., Goossens, A., Lacchini, E., 2022. Jasmonate:A hormone of primary importance for plant metabolism. Curr Opin Plant Biol 67, 102197.
    Niaz, M., Zhang, L., Lv, G., Hu, H., Yang, X., Cheng, Y., Zheng, Y., Zhang, B., Yan, X., Htun, A., et al., 2023. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnology Journal 21, 979-989.
    Okada, K., Abe, H., Arimura, G., 2015. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 56, 16-27.
    Patkar, R.N., Benke, P.I., Qu, Z., Constance Chen, Y.Y., Yang, F., Swarup, S., Naqvi, N.I., 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nature Chemical Biology 11, 733-740.
    Qi, T., Wang, J., Huang, H., Liu, B., Gao, H., Liu, Y., Song, S., Xie, D., 2015. Regulation of JasmonateInduced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. Plant Cell 27, 1634-1649.
    Schulze, S., Yu, L., Hua, C., Zhang, L., Kolb, D., Weber, H., Ehinger, A., Saile, S.C., Stahl, M., FranzWachtel, M., et al., 2022. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host & Microbe 30, 1717-1731.e1716.
    Schwessinger, B., 2017. Fundamental wheat stripe rust research in the 21stcentury. New Phytol 213, 1625-1631.
    van Wijk, K.J., Kessler, F., 2017. Plastoglobuli:Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68, 253-289.
    Wang, C.-F., Huang, L.-L., Buchenauer, H., Han, Q.-M., Zhang, H.-C., Kang, Z.-S., 2007. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology 71, 230-239.
    Wang, S., Li, Q.P., Wang, J., Yan, Y., Zhang, G.L., Yan, Y., Zhang, H., Wu, J., Chen, F., Wang, X., et al., 2019. YR36/WKS1-Mediated Phosphorylation of PsbO, an Extrinsic Member of Photosystem II, Inhibits Photosynthesis and Confers Stripe Rust Resistance in Wheat. Mol Plant 12, 1639-1650.
    Wasternack, C., Feussner, I., 2018. The oxylipin pathways:Biochemistry and function. Annu Rev Plant Biol 69, 363-386.
    Wasternack, C., Hause, B., 2013. Jasmonates:biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111, 1021-1058.
    Wasternack, C., Song, S., 2017. Jasmonates:biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68, 1303-1321.
    Yan, J., Li, S., Gu, M., Yao, R., Li, Y., Chen, J., Yang, M., Tong, J., Xiao, L., Nan, F., et al., 2016. Endogenous bioactive jasmonate is composed of a set of (+)-7-iso-JA-amino acid conjugates. Plant Physiol 172, 2154-2164.
    Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., Qin, Q., Bian, Z., Li, Y., Lan, Y., et al., 2020. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28, 89-103.e108.
    Yu, K., Yang, W., Zhao, B., Wang, L., Zhang, P., Ouyang, Y., Chang, Y., Chen, G., Zhang, J., Wang, S., et al., 2022. The Kelch-F-box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in Arabidopsis thaliana by promoting the turn-over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). New Phytol 235, 885-897.
    Zhang, L., Zhang, F., Melotto, M., Yao, J., He, S.Y., 2017. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68, 1371-1385.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  33
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 录用日期:  2023-08-29
  • 修回日期:  2023-08-29
  • 网络出版日期:  2023-09-02

目录

    /

    返回文章
    返回