留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sex-biased single cell genetic landscape in mice with autism spectrum disorder

Qian Zhang Yongjie Wang Jie Tao Ruixue Xia Yijie Zhang Zhirui Liu Jiwei Chenga

Qian Zhang, Yongjie Wang, Jie Tao, Ruixue Xia, Yijie Zhang, Zhirui Liu, Jiwei Chenga. Sex-biased single cell genetic landscape in mice with autism spectrum disorder[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.012
引用本文: Qian Zhang, Yongjie Wang, Jie Tao, Ruixue Xia, Yijie Zhang, Zhirui Liu, Jiwei Chenga. Sex-biased single cell genetic landscape in mice with autism spectrum disorder[J]. 遗传学报. doi: 10.1016/j.jgg.2023.08.012
Qian Zhang, Yongjie Wang, Jie Tao, Ruixue Xia, Yijie Zhang, Zhirui Liu, Jiwei Chenga. Sex-biased single cell genetic landscape in mice with autism spectrum disorder[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.012
Citation: Qian Zhang, Yongjie Wang, Jie Tao, Ruixue Xia, Yijie Zhang, Zhirui Liu, Jiwei Chenga. Sex-biased single cell genetic landscape in mice with autism spectrum disorder[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.012

Sex-biased single cell genetic landscape in mice with autism spectrum disorder

doi: 10.1016/j.jgg.2023.08.012
基金项目: 

This work was supported by the National Natural Science Foundation of China (Nos. 82074162 and 82274344), Project for Capacity Promotion of Putuo District Clinical Special Disease “Stroke”, Science and Technology Innovation Project of Putuo District Health System (Nos. ptkwws201902 and ptkwws202301), Training Plan of “100 professionals” of Shanghai Putuo District Central Hospital( 2022-RCJC-05), Project of “XingLin Scholars Training” of Chengdu University of Traditional Chinese Medicine (No. YYZX2022170), and Shanghai Putuo District Health System Clinical Characteristic Special Disease Construction Project (No. 2023tszb04).

详细信息
    通讯作者:

    Zhirui Liu,E-mail addresses:zrliu@sibs.ac.cn

Sex-biased single cell genetic landscape in mice with autism spectrum disorder

Funds: 

This work was supported by the National Natural Science Foundation of China (Nos. 82074162 and 82274344), Project for Capacity Promotion of Putuo District Clinical Special Disease “Stroke”, Science and Technology Innovation Project of Putuo District Health System (Nos. ptkwws201902 and ptkwws202301), Training Plan of “100 professionals” of Shanghai Putuo District Central Hospital( 2022-RCJC-05), Project of “XingLin Scholars Training” of Chengdu University of Traditional Chinese Medicine (No. YYZX2022170), and Shanghai Putuo District Health System Clinical Characteristic Special Disease Construction Project (No. 2023tszb04).

  • 摘要: Autistic spectrum disorder (ASD) is a male-biased heterogeneous neurodevelopmental disorder that affects approximately 1%–2% of the population. Prenatal exposure to valproic acid (VPA) is a recognized risk factor for ASD, but the cellular and molecular basis of VPA-induced ASD at the single-cell resolution is unclear. Here, we aimed to compare the cellular and molecular differences in the hippocampus between male and female prenatal mice with ASD at the single-cell transcriptomic level. The transcriptomes of more than 45,000 cells were assigned to 12 major cell types, including neurons, glial cells, vascular cells, and immune cells. Cell type-specific genes with altered expression after prenatal VPA exposure were analyzed, and the largest number of differentially expressed genes (DEGs) were found in neurons, choroid plexus epithelial cells, and microglia. In microglia, several pathways related to inflammation were found in both males and females, including the TNF, NF-κB, Toll-like receptor, and MAPK signaling pathways, which are important for the induction of autistic-like behavior. Additionally, we noted that several X-linked genes, including Bex1, Bex3, and Gria3, were among the male-specific DEGs of neurons. This pioneering study describes the landscape of the transcriptome in the hippocampus of autistic individuals. The elucidation of sexual differences could provide innovative strategies for the prevention and treatment of ASD.
  • Abrahams, B.S., Arking, D.E., Campbell, D.B., Mefford, H.C., Morrow, E.M., Weiss, L.A., Menashe, I., Wadkins, T., Banerjee-Basu, S., Packer, A., 2013. SFARI Gene 2.0:a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism. 4, 1-3.
    Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., van den Oord, J., et al., 2017. SCENIC:single-cell regulatory network inference and clustering. Nat. Methods 14, 1083-1086.
    Akintunde, M.E., Rose, M., Krakowiak, P., Heuer, L., Ashwood, P., Hansen, R., Hertz-Picciotto, I., Van de Water, J., 2015. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J. Neuroimmunol. 286, 33-41.
    Allen-Brady, K., Miller, J., Matsunami, N., Stevens, J., Block, H., Farley, M., Krasny, L., Pingree, C., Lainhart, J., Leppert, M., et al., 2009. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol. Psychiatry 14, 590-600.
    Amaral, D.G., Schumann, C.M., Nordahl, C.W., 2008. Neuroanatomy of autism. Trends Neurosci. 31, 137-145.
    Arnold, M., Saijo, K., 2021. Estrogen receptor β as a candidate regulator of sex differences in the maternal immune activation model of ASD. Front. Mol. Neurosci. 14, 717411.
    Bargiela, S., Steward, R., Mandy, W., 2016. The experiences of late-diagnosed women with autism spectrum conditions:an investigation of the female autism phenotype. J. Autism Dev. Disord. 46, 3281-3294.
    Baron-Cohen, S., Lombardo, M.V., Auyeung, B., Ashwin, E., Chakrabarti, B., Knickmeyer, R., 2011. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 9, e1001081.
    Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., Newell, E.W., 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38.
    Brewer, G.J., Torricelli, J.R., 2007. Isolation and culture of adult neurons and neurospheres. Nat. Protoc. 2, 1490.
    Brumback, A.C., Ellwood, I., Kjaerby, C., Iafrati, J., Robinson, S., Lee, A., Patel, T., Nagaraj, S., Davatolhagh, F., Sohal, V.S., 2018. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry 23, 2078-2089.
    Chaste, P., Leboyer, M., 2012. Autism risk factors:genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 14, 281.
    Chen, J., Alberts, I., Li, X., 2014. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int. J. Dev. Neurosci. 35, 35-41.
    Corbett, B., Kantor, A.B., Schulman, H., Walker, W.L., Lit, L., Ashwood, P., Rocke, D.M., Sharp, F.R., 2007. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol. Psychiatry 12, 292-306.
    Dougherty, J.D., Marrus, N., Maloney, S.E., Yip, B., Sandin, S., Turner, T.N., Selmanovic, D., Kroll, K.L., Gutmann, D.H., Constantino, J.N., 2022. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder? Neuron 110, 3243-3262.
    Efremova, M., Vento-Tormo, M., Teichmann, S.A., Vento-Tormo, R., 2020. CellPhoneDB:inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484-1506.
    Esteban, F.J., Wall, D.P., 2011. Using game theory to detect genes involved in autism spectrum disorder. Top. 19, 121-129.
    Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Abu-Odeh, D., Mori, S., Huang, H., Oishi, K., 2009. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr. Res. 112, 46-53.
    Felder, B., Radlwimmer, B., Benner, A., Mincheva, A., Tödt, G., Beyer, K.S., Schuster, C., Bölte, S., Schmötzer, G., Klauck, S.M., et al., 2009. FARP2, HDLBP and PASK are down-regulated in a patient with autism and 2q37. 3 deletion syndrome. Am. J. Med. Genet. A. 149, 952-959.
    Feleke, R., Jazayeri, D., Abouzeid, M., Powell, K.L., Srivastava, P.K., O'Brien, T.J., Jones, N.C., Johnson, M.R., 2022. Integrative genomics reveals pathogenic mediator of valproate-induced neurodevelopmental disability. Brain 145, 3832-3842.
    Ferri, S.L., Abel, T., Brodkin, E.S., 2018. Sex differences in autism spectrum disorder:a review. Curr. Psychiatry Rep. 20, 1-17.
    Fombonne, E., 2005. The changing epidemiology of autism. J. Appl. Res. Intellect. Disabil. 18, 281-294.
    Fujita-Jimbo, E., Yu, Z.L., Li, H., Yamagata, T., Mori, M., Momoi, T., Momoi, M.Y., 2012. Mutation in Parkinson disease-associated, G-protein-coupled receptor 37(GPR37/PaelR) is related to autism spectrum disorder. PLoS ONE. 7, e51155.
    Garbett, K., Ebert, P.J., Mitchell, A., Lintas, C., Manzi, B., Mirnics, K., Persico, A.M., 2008. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30, 303-311.
    Gupta, S., Ellis, S.E., Ashar, F.N., Moes, A., Bader, J.S., Zhan, J., West, A.B., Arking, D.E., 2014. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5, 5748.
    Hadley, D., Wu, Z.L., Kao, C., Kini, A., Mohamed-Hadley, A., Thomas, K., Vazquez, L., Qiu, H., Mentch, F., Pellegrino, R., et al., 2014. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat. Commun. 5, 1-10.
    Herz, J., Chen, Y., 2006. Reelin lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 7, 850-859.
    Hettinger, J.A., 2008. A PPP1R1B Polymorphism is Associated with Risk for Autism Spectrum Disorders in Male-only Affected Sib-pair Families.
    Hu, V.W., 2012. Subphenotype-dependent disease markers for diagnosis and personalized treatment of autism spectrum disorders. Dis. Markers. 33, 277-288.
    Ito, Y., Nakamura, Y., Takahashi, N., Saito, S., Aleksic, B., Iwata, N., Inada, T., Ozaki, N., 2008. A genetic association study of the FXYD domain containing ion transport regulator 6 (FXYD6) gene, encoding phosphohippolin, in susceptibility to schizophrenia in a Japanese population. Neurosci. Lett. 438, 70-75.
    Lombardo, M.V., 2021. Ribosomal protein genes in post-mortem cortical tissue and iPSC-derived neural progenitor cells are commonly up-regulated in expression in autism. Mol. Psychiatry 26, 1432-1435.
    Lucchina, L., Depino, A.M., 2014. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res. 7, 273-289.
    May, P., Rohlmann, A., Bock, H.H., Zurhove, K., Marth, J.D., Schomburg, E.D., Noebels, J.L., Beffert, U., Sweatt, J.D., Weeber, E.J., et al., 2004. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol. 24, 8872-8883.
    Morgan, J.T., Chana, G., Pardo, C.A., Achim, C., Semendeferi, K., Buckwalter, J., Courchesne, E., Everall, I.P., 2010. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68, 368-376.
    Mostafa, G.A., Al-Ayadhi, L.Y., 2012. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism:relation to autoimmunity. J. Neuroinflamm. 9, 1-7.
    Nadeem, A., Ahmad, S.F., Attia, S.M., Bakheet, S.A., Al-Harbi, N.O., Al-Ayadhi, L.Y., 2018. Activation of IL-17 receptor leads to increased oxidative inflammation in peripheral monocytes of autistic children. Brain Behav. Immun. 67, 335-344.
    Nadler, J., Moy, S.S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N.B., Barbaro, R.P., Piven, J., Magnuson, T.R., et al., 2004. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 3, 303-314.
    Nassir, N., Bankapur, A., Samara, B., Ali, A., Ahmed, A., Inuwa, I.M., Zarrei, M., Safizadeh Shabestari, S.A., AlBanna, A., Howe, J.L., et al., 2021. Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells. Hum. Genomics. 15, 1-16.
    Ngounou Wetie, A.G., Wormwood, K., Thome, J., Dudley, E., Taurines, R., Gerlach, M., Woods, A.G., Darie, C.C., 2014. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis. 35, 2046-2054.
    Ornoy, A., 2009. Valproic acid in pregnancy:how much are we endangering the embryo and fetus? Reprod. Toxicol. 28, 1-10.
    Parikshak, N.N., Swarup, V., Belgard, T.G., Irimia, M., Ramaswami, G., Gandal, M.J., Hartl, C., Leppa, V., Ubieta, L.d.l.T., Huang, J., 2016. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423-427.
    Paulsen, B., Velasco, S., Kedaigle, A.J., Pigoni, M., Quadrato, G., Deo, A.J., Adiconis, X., Uzquiano, A., Sartore, R., Yang, S.M., 2022. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268-273.
    Prasad, A., Merico, D., Thiruvahindrapuram, B., Wei, J., Lionel, A.C., Sato, D., Rickaby, J., Lu, C., Szatmari, P., Roberts, W., et al., 2012. A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda). 2, 1665-1685.
    Rasalam, A.D., Hailey, H., Williams, J.H., Moore, S.J., Turnpenny, P.D., Lloyd, D.J., Dean, J.C., 2005. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol. 47, 551-555.
    Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.Y., Peng, M., Collins, R., Grove, J., Klei, L., et al., 2020. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 180, 568-584. e523.
    Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B., 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691-705.
    Schumann, C.M., Hamstra, J., Goodlin-Jones, B.L., Lotspeich, L.J., Kwon, H., Buonocore, M.H., Lammers, C.R., Reiss, A.L., Amaral, D.G., 2004. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392-6401.
    Shimamoto, C., Ohnishi, T., Maekawa, M., Watanabe, A., Ohba, H., Arai, R., Iwayama, Y., Hisano, Y., Toyota, T., Toyoshima, M., et al., 2015. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum. Mol. Genet. 24, 2409-2409.
    Stoica, G.E., Kuo, A., Aigner, A., Sunitha, I., Souttou, B., Malerczyk, C., Caughey, D.J., Wen, D., Karavanov, A., Riegel, A.T., et al., 2001. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem. 276, 16772-16779.
    Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., Yoshihara, Y., Omata, K., Matsumoto, K., Tsuchiya, K.J., Iwata, Y., Tsujii, M., Sugiyama, T., Mori, N., 2013. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70, 49-58.
    Tian, S.-S., Tsoulfas, P., Zinn, K., 1991. Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell. 67, 675-685.
    Tick, B., Bolton, P., Happé, F., Rutter, M., Rijsdijk, F., 2016. Heritability of autism spectrum disorders:a meta-analysis of twin studies. J. Child Psychol Psychiatry 57, 585-595.
    Torres, A.R., Westover, J.B., Rosenspire, A.J., 2012. HLA immune function genes in autism. Autism Res. Treat. 2012, 959073.
    van der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579-2605.
    Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal, N., Rowitch, D.H., Kriegstein, A.R., 2019. Single-cell genomics identifies cell type-specific molecular changes in autism. Science. 364, 685-689.
    Voineagu, I., Wang, X., Johnston, P., Lowe, J.K., Tian, Y., Horvath, S., Mill, J., Cantor, R.M., Blencowe, B.J., Geschwind, D.H., 2011. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 474, 380-384.
    Werling, D.M., 2016. The role of sex-differential biology in risk for autism spectrum disorder. Biol. Sex Differ. 7, 58.
    Werling, D.M., Parikshak, N.N., Geschwind, D.H., 2016. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun. 7, 1-11.
    Yochum, C.L., Bhattacharya, P., Patti, L., Mirochnitchenko, O., Wagner, G.C., 2010. Animal model of autism using GSTM1 knockout mice and early post-natal sodium valproate treatment. Behav. Brain Res. 210, 202-210.
    Zhang, Y., Li, N., Li, C., Zhang, Z., Teng, H., Wang, Y., Zhao, T., Shi, L., Zhang, K., Xia, K., 2020. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry 10, 4.
    Zhao, H., Wang, Q., Yan, T., Zhang, Y., Xu, H.J., Yu, H.P., Tu, Z., Guo, X., Jiang, Y.H., Li, X.J., et al., 2019. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry 9, 1-13.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  31
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-08-30
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回