留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Xiongtao Li, Beilu Cao, Dejie Du, Long Song, Lulu Tian, Xiaoming Xie, Zhaoyan Chen, Yanpeng Ding, Xuejiao Cheng, Yingyin Yao, Weilong Guo, Zhenqi Su, Qixin Sun, Zhongfu Ni, Lingling Chai, Jie Liu. TaACTIN7-D regulates plant height and grain shape in bread wheat[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.001
引用本文: Xiongtao Li, Beilu Cao, Dejie Du, Long Song, Lulu Tian, Xiaoming Xie, Zhaoyan Chen, Yanpeng Ding, Xuejiao Cheng, Yingyin Yao, Weilong Guo, Zhenqi Su, Qixin Sun, Zhongfu Ni, Lingling Chai, Jie Liu. TaACTIN7-D regulates plant height and grain shape in bread wheat[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.001
Xiongtao Li, Beilu Cao, Dejie Du, Long Song, Lulu Tian, Xiaoming Xie, Zhaoyan Chen, Yanpeng Ding, Xuejiao Cheng, Yingyin Yao, Weilong Guo, Zhenqi Su, Qixin Sun, Zhongfu Ni, Lingling Chai, Jie Liu. TaACTIN7-D regulates plant height and grain shape in bread wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.001
Citation: Xiongtao Li, Beilu Cao, Dejie Du, Long Song, Lulu Tian, Xiaoming Xie, Zhaoyan Chen, Yanpeng Ding, Xuejiao Cheng, Yingyin Yao, Weilong Guo, Zhenqi Su, Qixin Sun, Zhongfu Ni, Lingling Chai, Jie Liu. TaACTIN7-D regulates plant height and grain shape in bread wheat[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.001

TaACTIN7-D regulates plant height and grain shape in bread wheat

doi: 10.1016/j.jgg.2023.09.001
基金项目: 

We thank Tonglin Mao and Yan Li (China Agricultural University) for valuable suggestions on the study. This research was supported by the grants from National Key Research and Development Program of China (2022YFF1003401 to Jie Liu), Hainan Yazhou Bay Seed Laboratory (B21HJ0111 to Zhongfu Ni) and National Natural Science Foundation of China (31991210 to Qixin Sun and 32072055 to Jie Liu).

详细信息
    通讯作者:

    Lingling Chai,E-mail addresses:chaizz901230@163.com

    Jie Liu,E-mail addresses:jieliu@cau.edu.cn

TaACTIN7-D regulates plant height and grain shape in bread wheat

Funds: 

We thank Tonglin Mao and Yan Li (China Agricultural University) for valuable suggestions on the study. This research was supported by the grants from National Key Research and Development Program of China (2022YFF1003401 to Jie Liu), Hainan Yazhou Bay Seed Laboratory (B21HJ0111 to Zhongfu Ni) and National Natural Science Foundation of China (31991210 to Qixin Sun and 32072055 to Jie Liu).

  • 摘要: Exploitation of new gene resources and genetic networks contributing to the control of crop yield-related traits, such as plant height and grain size and shape, may enable us to breed modern high-yielding wheat varieties through molecular methods. In this study, via ethylmethanesulfonate (EMS) mutagenesis, we identified a wheat mutant plant, mu-597, that shows semi-dwarf plant architecture and round grain shape. Through bulked segregant RNA-seq and map-based cloning, the causal gene for the semi-dwarf phenotype of mu-597 was located. We found that a single-base mutation in the coding region of TaACTIN7-D (TaACT7-D), leading to a Gly-to-Ser (G65S) amino acid mutation at the 65th residue of the deduced TaACT7-D protein, can explain the semi- dwarfism and round grain shape of mu-597. Further evidence shows that the G65S mutation in TaACT7-D hinders the polymerization of actin from monomeric (G-actin) to filamentous (F-actin) status while attenuates wheat responses to multiple phytohormones, including brassinosteroids, auxin, and gibberellin. Together, these findings not only define a new semi-dwarfing gene resource that can be potentially used to design plant height and grain shape of bread wheat but also establish a direct link between actin structure modulation and phytohormone signal transduction.
  • An, H.S.,Mogami, K., 1996. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant actin structures. J. Mol. Biol. 260, 492-505.
    Buss, W., Ford, B.A., Foo, E., Schnippenkoetter, W., Borrill, P., Brooks, B., Ashton, A.R., Chandler, P.M.,Spielmeyer, W., 2020. Overgrowth mutants determine the causal role of gibberellin GA2oxidaseA13 in Rht12 dwarfism of wheat. J. Exp. Bot. 71, 7171-7178.
    Chai, L., Chen, Z., Bian, R., Zhai, H., Cheng, X., Peng, H., Yao, Y., Hu, Z., Xin, M., Guo, W., et al., 2019. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor. Appl. Genet. 132, 1815-1831.
    Chai, L., Xin, M., Dong, C., Chen, Z., Zhai, H., Zhuang, J., Cheng, X., Wang, N., Geng, J., Wang, X., et al., 2022. A natural variation in ribonuclease H-like gene underlies Rht8 to confer "Green Revolution" trait in wheat. Mol. Plant 15, 377-380.
    Chang, M.,Huang, S., 2015. Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. Plant J. 83, 515-527.
    Chen, S.L., Gao, R.H., Wang, H.Y., Wen, M.X., Xiao, J., Bian, N.F., Zhang, R.Q., Hu, W.J., Cheng, S.H., Bie, T.D., et al., 2015. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 203, 583-594.
    Cheng, X., Xin, M., Xu, R., Chen, Z., Cai, W., Chai, L., Xu, H., Jia, L., Feng, Z., Wang, Z., et al., 2020. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. Plant Cell 32, 923-934.
    Durer, Z.A., Kudryashov, D.S., Sawaya, M.R., Altenbach, C., Hubbell, W., Reisler, E., 2012. Structural states and dynamics of the D-loop in actin. Biophys. J. 103, 930-939.
    Ellis, M.H., Rebetzke, G.J., Chandler, P., Bonnett, D., Spielmeyer, W., Richards, R.A., 2004. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31, 583-589.
    Eshed, Y., Lippman, Z.B., 2019. Revolutions in agriculture chart a coursresee for targeted breeding of old and new crops. Science 366, eaax0025.
    Falahzadeh, K., Banaei-Esfahani, A., Shahhoseini, M., 2015. The potential roles of actin in the nucleus. Cell J. 17, 7-14.
    Ford, B.A., Foo, E., Sharwood, R., Karafiatova, M., Vrana, J., MacMillan, C., Nichols, D.S., Steuernagel, B., Uauy, C., Dolezel, J., et al., 2018. Rht18 semidwarfism in wheat is due to increased GA2-oxidaseA9 expression and reduced GA content. Plant Physiol. 177, 168-180.
    Gilliland, L.U., Pawloski, L.C., Kandasamy, M.K., Meagher, R.B., 2003. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. 33, 319-328.
    Glanc, M., Fendrych, M., Friml, J., 2019. PIN2 polarity establishment in Arabidopsis in the absence of an intact cytoskeleton. Biomolecules 9, 222.
    Hall, B.G., 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30, 1229-1235.
    Higaki, T., Kutsuna, N., Sano, T., Kondo, N., Hasezawa, S., 2010. Quantification and cluster analysis of actin cytoskeletal structures in plant cells:role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 61, 156-165.
    Iwabuchi, K., Ohnishi, H., Tamura, K., Fukao, Y., Furuya, T., Hattori, K., Tsukaya, H., Hara-Nishimura, I., 2019. Angustifolia regulates actin filament alignment for nuclear positioning in leaves. Plant Physiol. 179, 233-247.
    Kandasamy, M.K., Gilliland, L.U., McKinney, E.C., Meagher, R.B., 2001. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13, 1541-1554.
    Kandasamy, M.K., McKinney, E.C., Meagher, R.B., 2002. Functional nonequivalency of actin isovariants in Arabidopsis. Mol. Biol. Cell 13, 251-261.
    Kandasamy, M.K., McKinney, E.C., Meagher, R.B., 2009. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21, 701-718.
    Kandasamy, M.K., McKinney, E.C., Meagher, R.B., 2010. Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 67, 729-743.
    Kato, T., Morita, M.T., Tasaka, M., 2010. Defects in dynamics and functions of actin filament in Arabidopsis caused by the dominant-negative actin fiz1-induced fragmentation of actin filament. Plant Cell Physiol. 51, 333-338.
    Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., Friml, J., 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U. S. A. 105, 17812-17817.
    Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., Zazímalová, E., 2009. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 10, 249.
    Kroupin, P.Y., Karlov, G.I., Bespalova, L.A., Salina, E.A., Chernook, A.G., Watanabe, N., Bazhenov, M.S., Panchenko, V.V., Nazarova, L.A., Kovtunenko, V.Y., et al., 2020. Effects of Rht17 in combination with Vrn-B1 and Ppd-D1 alleles on agronomic traits in wheat in black earth and non-black earth regions. BMC Plant Biol. 20, 304.
    Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Sharma, D., Singh, G.P., 2019. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol. Biol. Rep. 46, 1845-1853.
    Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Páez-García, A., Sánchez-Bermejo, E., Mohan, T.C., Leo del Puerto, Y., et al., 2012. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 22, 1275-1285.
    Li, A., Yang, W., Lou, X., Liu, D., Sun, J., Guo, X., Wang, J., Li, Y., Zhan, K., Ling, H.-Q., et al., 2013. Novel natural allelic variations at the Rht-1 loci in wheat. J. Integr. Plant Biol. 55, 1026-1037.
    Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, M., Li, B., Guo, G., Chen, Y., Xie, J., Lu, P., Wu, Q., Zhang, D., Zhang, H., Yang, J., et al., 2018. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J. 6, 236-243.
    Liu, J., Chen, Z., Wang, Z., Zhang, Z., Xie, X., Wang, Z., Chai, L., Song, L., Cheng, X., Feng, M., et al., 2021. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Mol. Plant 14, 1472-1488.
    Liu, J., Yao, Y.Y., Xin, M.M., Peng, H.R., Ni, Z.F., Sun, Q.X., 2022. Shaping polyploid wheat for success:Origins, domestication, and the genetic improvement of agronomic traits. J. Integr. Plant Biol. 64, 536-563.
    Liu, S.Z., Yeh, C.T., Tang, H.M., Nettleton, D., Schnable, P.S., 2012. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7, e36406.
    Maisch, J., Nick, P., 2007. Actin is involved in auxin-dependent patterning. Plant Physiol. 143, 1695-1704.
    Mao, H., Nakamura, M., Viotti, C., Grebe, M., 2016. A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-binding cassette transporter. Plant Physiol. 172, 2245-2260.
    Mascarenhas, J.P., 1993. Molecular mechanisms of pollen-tube growth and differentiation. Plant Cell 5, 1303-1314.
    Matsuzaki, M., Fujiwara, I., Kashima, S., Matsumoto, T., Oda, T., Hayashi, M., Maeda, K., Takiguchi, K., Maéda, Y.,Narita, A., 2020. D-Loop mutation G42A/G46A decreases actin dynamics. Biomolecules 10, 736.
    McDowell, J.M., An, Y.Q., Huang, S.R., McKinney, E.C., Meagher, R.B., 1996a. The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol. 111, 699-711.
    McDowell, J.M., Huang, S.R., McKinney, E.C., An, Y.Q., Meagher, R.B., 1996b. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142, 587-602.
    McIntosh, R.A., Hart, G.E.,Gale, M.D., 1990. Catalog of gene symbols for wheat -1990 supplement. Cereal Res. Commun. 18, 141-157.
    Meagher, R.B., McKinney, E.C., Vitale, A.V., 1999. The evolution of new structures:clues from plant cytoskeletal genes. Trends Genet. 15, 278-284.
    Mo, Y., Vanzetti, L.S., Hale, I., Spagnolo, E.J., Guidobaldi, F., Al-Oboudi, J., Odle, N., Pearce, S., Helguera, M., Dubcovsky, J., 2018. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor. Appl. Genet. 131, 2021-2035.
    Nishimura, T., Yokota, E., Wada, T., Shimmen, T., Okada, K., 2003. An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol. 44, 1131-1140.
    Noguchi, T.Q., Gomibuchi, Y., Murakami, K., Ueno, H., Hirose, K., Wakabayashi, T., Uyeda, T.Q., 2010a. Dominant negative mutant actins identified in flightless Drosophila can be classified into three classes. J. Biol. Chem. 285, 4337-4347.
    Noguchi, T.Q., Toya, R., Ueno, H., Tokuraku, K., Uyeda, T.Q., 2010b. Screening of novel dominant negative mutant actins using glycine targeted scanning identifies G146V actin that cooperatively inhibits cofilin binding. Biochem. Biophys. Res. Commun. 396, 1006-1011.
    Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., et al., 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261.
    Peng, Z.S., Li, X., Yang, Z.J., Liao, M.L., 2011. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet. Mol. Res. 10, 2349-2357.
    Pollard, T.D., 2016. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8, a018226.
    Pollard, T.D.,Cooper, J.A., 2009. Actin, a central player in cell shape and movement. Science 326, 1208-1212.
    Richards, D.E., King, K.E., Ait-ali, T.,Harberd, N.P., 2001. How gibberellin regulates plant growth and development:A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Biol. 52, 67-88.
    Scheuring, D., Lofke, C., Kruger, F., Kittelmann, M., Eisa, A., Hughes, L., Smith, R.S., Hawes, C., Schumacher, K., Kleine-Vehn, J., 2016. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc. Natl. Acad. Sci. U. S. A. 113, 452-457.
    Sheahan, M.B., Collings, D.A., Rose, R.J., McCurdy, A.D.W., 2020. ACTIN7 is required for perinuclear clustering of chloroplasts during Arabidopsis protoplast culture. Plants 9, 225.
    Slajcherova, K., Fiserova, J., Fischer, L., Schwarzerova, K., 2012. Multiple actin isotypes in plants:diverse genes for diverse roles? Front. Plant Sci. 3, 226.
    Song, J., Li, L., Liu, B., Dong, Y., Dong, Y., Li, F., Liu, S., Luo, X., Sun, M., Ni, Z., et al., 2023. Fine mapping of reduced height locus RHT26 in common wheat. Theor. Appl. Genet. 136, 62.
    Sun, L., Yang, W., Li, Y., Shan, Q., Ye, X., Wang, D., Yu, K., Lu, W., Xin, P., Pei, Z., et al., 2019. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J. 97, 887-900.
    Thomas, S.G., 2017. Novel Rht-1 dwarfing genes:tools for wheat breeding and dissecting the function of DELLA proteins. J. Exp. Bot. 68, 353-358.
    Tian, X., He, M., Mei, E., Zhang, B., Tang, J., Xu, M., Liu, J., Li, X., Wang, Z., Tang, W., et al., 2021. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. Plant Cell 33, 2753-2775.
    Tian, X.L., Wen, W.E., Xie, L., Fu, L.P., Xu, D.G., Fu, C., Wang, D.S., Chen, X.M., Xia, X.C., Chen, Q.J., et al., 2017. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front. Plant Sci. 8, 1379.
    Tyczewska, A., Wozniak, E., Gracz, J., Kuczynski, J.,Twardowski, T., 2018. Towards food security:current state and future prospects of agrobiotechnology. Trends Biotechnol. 36, 1219-1229.
    Vaskebova, L., Samaj, J.,Ovecka, M., 2018. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. Ann. Bot. 122, 889-901.
    Watanabe, N., 2008. Genetic collection and development of near-isogenic lines in durum wheat. Russ. J. Genet. Appl. Res. 12, 636-643.
    Wu, S., Xie, Y., Zhang, J., Ren, Y., Zhang, X., Wang, J., Guo, X., Wu, F., Sheng, P., Wang, J., et al., 2015. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27, 2829-2845.
    Wu, Y.Z., Fu, Y.C., Zhao, S.S., Gu, P., Zhu, Z.F., Sun, C.Q., Tan, L.B., 2016. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol. J. 14, 377-386.
    Würschum, T., Langer, S.M., Longin, C.F.H., Tucker, M.R., Leiser, W.L., 2017. A modern Green Revolution gene for reduced height in wheat. Plant J. 92, 892-903.
    Xiong, H., Zhou, C., Fu, M., Guo, H., Xie, Y., Zhao, L., Gu, J., Zhao, S., Ding, Y., Li, Y., et al., 2022. Cloning and functional characterization of Rht8, a "Green Revolution" replacement gene in wheat. Mol. Plant 15, 373-376.
    Yoo, S.D., Cho, Y.H., Sheen, J., 2007. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572.
    Zhao, K.J., Xiao, J., Liu, Y., Chen, S.L., Yuan, C.X., Cao, A.Z., You, F.M., Yang, D.L., An, S.M., Wang, H.Y., et al., 2018. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor. Appl. Genet. 131, 1825-1834.
    Zhu, J., Bailly, A., Zwiewka, M., Sovero, V., Di Donato, M., Ge, P., Oehri, J., Aryal, B., Hao, P., Linnert, M., et al., 2016. TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28, 930-948.
    Zhu, J., Geisler, M., 2015. Keeping it all together:auxin-actin crosstalk in plant development. J. Exp. Bot. 66, 4983-4998.
    Zhu, L.C., Zhang, Y., Hu, Y.J., Wen, T.Q., Wang, Q., 2013. Dynamic actin gene family evolution in primates. BioMed Res. Int. 2013, 630803.
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  44
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-09-03
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回