留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice

Yaling Wang Xueying Huang Guoying Sun Jingwen Chen Bangguo Wu Jiahui Luo Shuyan Tang Peng Dai Feng Zhang Jinsong Li Lingbo Wang

Yaling Wang, Xueying Huang, Guoying Sun, Jingwen Chen, Bangguo Wu, Jiahui Luo, Shuyan Tang, Peng Dai, Feng Zhang, Jinsong Li, Lingbo Wang. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.002
引用本文: Yaling Wang, Xueying Huang, Guoying Sun, Jingwen Chen, Bangguo Wu, Jiahui Luo, Shuyan Tang, Peng Dai, Feng Zhang, Jinsong Li, Lingbo Wang. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.002
Yaling Wang, Xueying Huang, Guoying Sun, Jingwen Chen, Bangguo Wu, Jiahui Luo, Shuyan Tang, Peng Dai, Feng Zhang, Jinsong Li, Lingbo Wang. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.002
Citation: Yaling Wang, Xueying Huang, Guoying Sun, Jingwen Chen, Bangguo Wu, Jiahui Luo, Shuyan Tang, Peng Dai, Feng Zhang, Jinsong Li, Lingbo Wang. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.002

Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice

doi: 10.1016/j.jgg.2023.09.002
基金项目: 

This work was supported by the National Key Research and Development Program of China (2021YFC2701400) and in part by the National Natural Science Foundation of China (32000393).

详细信息
    通讯作者:

    Lingbo Wang,E-mail address:wanglingbo@fudan.edu.cn

Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice

Funds: 

This work was supported by the National Key Research and Development Program of China (2021YFC2701400) and in part by the National Natural Science Foundation of China (32000393).

  • 摘要: During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 on sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
  • Ben Khelifa, M., Coutton, C., Zouari, R., Karaouzene, T., Rendu, J., Bidart, M., Yassine, S., Pierre, V., Delaroche, J., Hennebicq, S., et al., 2014. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 94, 95-104.
    Chemes, H.E., Brugo, S., Zanchetti, F., Carrere, C., and Lavieri, J.C., 1987. Dysplasia of the fibrous sheath:an ultrastructural defect of human spermatozoa associated with sperm immotility and primary sterility. Fertil. Steril. 48, 664-669.
    Chen, H., Shi, X., Li, X., Diao, R., Ma, Q., Jin, J., Qiu, Z., Li, C., Yu, M.K., Wang, C., et al., 2021a. CD147 deficiency is associated with impairedsperm motility/acrosome reaction and offersa therapeutic target for asthenozoospermia. Mol. Ther. Nucl. Acids 26, 1374-1386.
    Chen, J., Wang, Y., Wu, B., Shi, H., and Wang, L., 2023. Experimental and molecular support for Cfap70 as a causative gene of multiple morphological abnormalities of the flagella with male infertility. Biol. Reprod. https://doi.org/10.1093/biolre/ioad076.
    Chen, P., Saiyin, H., Shi, R., Liu, B., Han, X., Gao, Y., Ye, X., Zhang, X., and Sun, Y., 2021b. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex. Hum. Reprod. 36, 2587-2596.
    Cong, J., Yang, Y., Wang, X., Shen, Y., Qi, H.T., Liu, C., Tang, S., Wu, S., Tian, S., Zhou, Y., et al., 2022. Deficiency of X-linked TENT5D causes male infertility by disrupting the mRNA stability during spermatogenesis. Cell Discov. 8, 23.
    Coutton, C., Escoffier, J., Martinez, G., Arnoult, C., and Ray, P.F., 2015. Teratozoospermia:spotlight on the main genetic actors in the human. Hum. Reprod. Update 21, 455-485.
    Coutton, C., Martinez, G., Kherraf, Z.E., Amiri-Yekta, A., Boguenet, M., Saut, A., He, X., Zhang, F., Cristou-Kent, M., Escoffier, J., et al., 2019. Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. Am. J. Hum. Genet. 104, 331-340.
    Coutton, C., Vargas, A.S., Amiri-Yekta, A., Kherraf, Z.E., Ben Mustapha, S.F., Le Tanno, P., Wambergue-Legrand, C., Karaouzene, T., Martinez, G., Crouzy, S., et al., 2018. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat. Commun. 9, 686.
    Dai, J., Chen, Y., Li, Q., Zhang, T., Zhou, Q., Gong, F., Lu, G., Zheng, W., and Lin, G., 2022. Pathogenic variant in ACTL7A causes severe teratozoospermia characterized by bubble-shaped acrosomes and male infertility. Mol. Hum. Reprod. 28, gaac028.
    Dai, J., Zhang, T., Guo, J., Zhou, Q., Gu, Y., Zhang, J., Hu, L., Zong, Y., Song, J., Zhang, S., et al., 2021. Homozygous pathogenic variants in ACTL9 cause fertilization failure and male infertility in humans and mice. Am. J. Hum. Genet. 108, 469-481.
    Ernst, C., Eling, N., Martinez-Jimenez, C.P., Marioni, J.C., and Odom, D.T., 2019. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat. Commun. 10, 1251.
    Fang, X., Gamallat, Y., Chen, Z., Mai, H., Zhou, P., Sun, C., Li, X., Li, H., Zheng, S., Liao, C., et al., 2021. Hypomorphic and hypermorphic mouse models of Fsip2 indicate its dosage-dependent roles in sperm tail and acrosome formation. Development 148, dev199216.
    Fiedler, S.E., Dudiki, T., Vijayaraghavan, S., and Carr, D.W., 2013. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol. Reprod. 88, 41.
    Han, F., Liu, C., Zhang, L., Chen, M., Zhou, Y., Qin, Y., Wang, Y., Chen, M., Duo, S., Cui, X., et al., 2017. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 8, e2532.
    Huang, G., Zhang, X., Yao, G., Huang, L., Wu, S., Li, X., Guo, J., Wen, Y., Wang, Y., Shang, L., et al., 2022. A loss-of-function variant in SSFA2 causes male infertility with globozoospermia and failed oocyte activation. Reprod. Biol. Endocrinol. 20, 103.
    Huang, T., Yin, Y., Liu, C., Li, M., Yu, X., Wang, X., Zhang, H., Muhammad, T., Gao, F., Li, W., et al., 2020. Absence of murine CFAP61 causes male infertility due to multiple morphological abnormalities of the flagella. Sci. Bull. 65, 854-864.
    Jha, K.N., Tripurani, S.K., and Johnson, G.R., 2017. TSSK6 is required for gammaH2AX formation and the histone-to-protamine transition during spermiogenesis. J. Cell Sci. 130, 1835-1844.
    Kaneda, Y., Miyata, H., Shimada, K., Oyama, Y., Iida-Norita, R., and Ikawa, M., 2022. IRGC1, a testis-enriched immunity related GTPase, is important for fibrous sheath integrity and sperm motility in mice. Dev. Biol. 488, 104-113.
    Kaneko, T., Toh, S., Mochida, I., Iwamori, N., Inai, T., and Iida, H., 2020. Identification of TMCO2 as an acrosome-associated protein during rat spermiogenesis. Mol. Reprod. Dev. https://doi.org/10.1002/mrd.23396.
    Kherraf, Z.E., Amiri-Yekta, A., Dacheux, D., Karaouzene, T., Coutton, C., Christou-Kent, M., Martinez, G., Landrein, N., Le Tanno, P., Fourati Ben Mustapha, S., et al., 2018. A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. Am. J. Hum. Genet. 103, 400-412.
    Kherraf, Z.E., Cazin, C., Coutton, C., Amiri-Yekta, A., Martinez, G., Boguenet, M., Fourati Ben Mustapha, S., Kharouf, M., Gourabi, H., Hosseini, S.H., et al., 2019. Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous QRICH2 mutations. Clin. Genet. 96, 394-401.
    Kierszenbaum, A.L., and Tres, L.L., 2004. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch. Histol. Cytol. 67, 271-284.
    Lehti, M.S., and Sironen, A., 2017. Formation and function of sperm tail structures in association with sperm motility defects. Biol. Reprod. 97, 522-536.
    Li, W., Tang, W., Teves, M.E., Zhang, Z., Zhang, L., Li, H., Archer, K.J., Peterson, D.L., Williams, D.C., Jr., Strauss, J.F., 3rd, et al., 2015. A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella. Development 142, 921-930.
    Lim, S., Kierzek, M., O'Connor, A.E., Brenker, C., Merriner, D.J., Okuda, H., Volpert, M., Gaikwad, A., Bianco, D., Potter, D., et al., 2019. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 160, 915-924.
    Lin, S.R., Li, Y.C., Luo, M.L., Guo, H., Wang, T.T., Chen, J.B., Ma, Q., Gu, Y.L., Jiang, Z.M., and Gui, Y.T., 2016. Identification and characteristics of the testes-specific gene, Ccdc38, in mice. Mol. Med. Rep. 14, 1290-1296.
    Liu, C., He, X., Liu, W., Yang, S., Wang, L., Li, W., Wu, H., Tang, S., Ni, X., Wang, J., et al., 2019. Bi-allelic Mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. Am. J. Hum. Genet. 105, 1168-1181.
    Liu, C., Miyata, H., Gao, Y., Sha, Y., Tang, S., Xu, Z., Whitfield, M., Patrat, C., Wu, H., Dulioust, E., et al., 2020. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. Am. J. Hum. Genet. 107, 330-341.
    Liu, C., Shen, Y., Tang, S., Wang, J., Zhou, Y., Tian, S., Wu, H., Cong, J., He, X., Jin, L., et al., 2023a. Homozygous variants in AKAP3 induce asthenoteratozoospermia and male infertility. J. Med. Genet. 60, 137-143.
    Liu, C., Tu, C., Wang, L., Wu, H., Houston, B.J., Mastrorosa, F.K., Zhang, W., Shen, Y., Wang, J., Tian, S., et al., 2021. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am. J. Hum. Genet. 108, 309-323.
    Liu, Y., Li, Y., Meng, L., Li, K., Gao, Y., Lv, M., Guo, R., Xu, Y., Zhou, P., Wei, Z., et al., 2023b. Bi-allelic human TEKT3 mutations cause male infertility with oligoasthenoteratozoospermia owing to acrosomal hypoplasia and reduced progressive motility. Hum. Mol. Genet. 32, 1730-1740.
    Lores, P., Dacheux, D., Kherraf, Z.E., Nsota Mbango, J.F., Coutton, C., Stouvenel, L., Ialy-Radio, C., Amiri-Yekta, A., Whitfield, M., Schmitt, A., et al., 2019. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am. J. Hum. Genet. 105, 1148-1167.
    Lores, P., Kherraf, Z.E., Amiri-Yekta, A., Whitfield, M., Daneshipour, A., Stouvenel, L., Cazin, C., Cavarocchi, E., Coutton, C., Llabador, M.A., et al., 2021. A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome. Hum. Genet. 140, 1031-1043.
    Lv, M., Liu, W., Chi, W., Ni, X., Wang, J., Cheng, H., Li, W.Y., Yang, S., Wu, H., Zhang, J., et al., 2020. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J. Med. Genet. 57, 445-453.
    Lv, M., Tang, D., Yu, H., Geng, H., Zhou, Y., Shao, Z., Li, K., Gao, Y., Guo, S., Xu, C., et al., 2023. Novel FSIP2 Variants Induce Super-Length Mitochondrial Sheath and Asthenoteratozoospermia in Humans. Int. J. Biol. Sci. 19, 393-411.
    Matsuoka, Y., Miyagawa, Y., Tokuhiro, K., Kitamura, K., Iguchi, N., Maekawa, M., Takahashi, T., Tsujimura, A., Matsumiya, K., Okuyama, A., et al., 2008. Isolation and characterization of the spermatid-specific Smrp1 gene encoding a novel manchette protein. Mol. Reprod. Dev. 75, 967-975.
    Miranda-Vizuete, A., Tsang, K., Yu, Y., Jimenez, A., Pelto-Huikko, M., Flickinger, C.J., Sutovsky, P., and Oko, R., 2003. Cloning and developmental analysis of murid spermatid-specific thioredoxin-2 (SPTRX-2), a novel sperm fibrous sheath protein and autoantigen. J. Biol. Chem. 278, 44874-44885.
    Modarres, P., Tavalaee, M., Ghaedi, K., and Nasr-Esfahani, M.H., 2019. An Overview of The Globozoospermia as A Multigenic Identified Syndrome. Int. J. Fertil. Steril. 12, 273-277.
    O'Donnell, L., 2014. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 4, e979623.
    Pierre, V., Martinez, G., Coutton, C., Delaroche, J., Yassine, S., Novella, C., Pernet-Gallay, K., Hennebicq, S., Ray, P.F., and Arnoult, C., 2012. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139, 2955-2965.
    Pleuger, C., Lehti, M.S., Dunleavy, J.E., Fietz, D., and O'Bryan, M.K., 2020. Haploid male germ cells-the Grand Central Station of protein transport. Hum. Reprod. Update 26, 474-500.
    Rawe, V.Y., Galaverna, G.D., Acosta, A.A., Olmedo, S.B., and Chemes, H.E., 2001. Incidence of tail structure distortions associated with dysplasia of the fibrous sheath in human spermatozoa. Hum. Reprod. 16, 879-886.
    Sha, Y.W., Xu, X., Mei, L.B., Li, P., Su, Z.Y., He, X.Q., and Li, L., 2017. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene 633, 48-53.
    Shen, Y., Zhang, F., Li, F., Jiang, X., Yang, Y., Li, X., Li, W., Wang, X., Cheng, J., Liu, M., et al., 2019. Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat. Commun. 10, 433.
    Sironen, A., Shoemark, A., Patel, M., Loebinger, M.R., and Mitchison, H.M., 2020. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77, 2029-2048.
    Sosnik, J., Buffone, M.G., and Visconti, P.E., 2010. Analysis of CAPZA3 localization reveals temporally discrete events during the acrosome reaction. J. Cell. Physiol. 224, 575-580.
    Sosnik, J., Miranda, P.V., Spiridonov, N.A., Yoon, S.Y., Fissore, R.A., Johnson, G.R., and Visconti, P.E., 2009. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell Sci. 122, 2741-2749.
    Spiridonov, N.A., Wong, L., Zerfas, P.M., Starost, M.F., Pack, S.D., Paweletz, C.P., and Johnson, G.R., 2005. Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol. Cell. Biol. 25, 4250-4261.
    Sutton, K.A., Jungnickel, M.K., Wang, Y., Cullen, K., Lambert, S., and Florman, H.M., 2004. Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev. Biol. 274, 426-435.
    Tapia Contreras, C., and Hoyer-Fender, S., 2019. CCDC42 Localizes to Manchette, HTCA and Tail and Interacts With ODF1 and ODF2 in the Formation of the Male Germ Cell Cytoskeleton. Front. Cell. Dev. Biol. 7, 151.
    Toure, A., Martinez, G., Kherraf, Z.E., Cazin, C., Beurois, J., Arnoult, C., Ray, P.F., and Coutton, C., 2021. The genetic architecture of morphological abnormalities of the sperm tail. Hum. Genet. 140, 21-42.
    Tu, C., Cong, J., Zhang, Q., He, X., Zheng, R., Yang, X., Gao, Y., Wu, H., Lv, M., Gu, Y., et al., 2021. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am. J. Hum. Genet. 108, 1466-1477.
    Wang, J., Wang, W., Shen, L., Zheng, A., Meng, Q., Li, H., and Yang, S., 2022. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella:A review of literature. Front. Genet. 13, 1034951.
    Wang, J., Zhang, J., Sun, X., Lin, Y., Cai, L., Cui, Y., Liu, J., Liu, M., and Yang, X., 2021a. Novel bi-allelic variants in ACTL7A are associated with male infertility and total fertilization failure. Hum. Reprod. 36, 3161-3169.
    Wang, L., Li, M.Y., Qu, C., Miao, W.Y., Yin, Q., Liao, J., Cao, H.T., Huang, M., Wang, K., Zuo, E., et al., 2017. CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Res. 27, 815-829.
    Wang, L., Zhang, Y., Fu, X., Dong, S., Tang, S., Zhang, N., Song, C., Yang, N., Zhang, L., Wang, H., et al., 2020. Joint utilization of genetic analysis and semi-cloning technology reveals a digenic etiology of Mullerian anomalies. Cell Res. 30, 91-94.
    Wang, W., Tian, S., Nie, H., Tu, C., Liu, C., Li, Y., Li, D., Yang, X., Meng, L., Hu, T., et al., 2021b. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis. Hum. Mol. Genet. 30, 2240-2254.
    Wang, W., Tu, C., Nie, H., Meng, L., Li, Y., Yuan, S., Zhang, Q., Du, J., Wang, J., Gong, F., et al., 2019. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J. Med. Genet. 56, 750-757.
    Wang, Y., Chen, J., Huang, X., Wu, B., Dai, P., Zhang, F., Li, J., and Wang, L., 2023. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. Sci. China-Life Sci. https://doi.org/10.1007/s11427-023-2408-2.
    Wei, Y.L., and Yang, W.X., 2018. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 660, 28-40.
    Xin, A., Qu, R., Chen, G., Zhang, L., Chen, J., Tao, C., Fu, J., Tang, J., Ru, Y., Chen, Y., et al., 2020. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor inducing early embryonic arrest. Sci. Adv. 6, eaaz4796.
    Xiong, W., Shen, C., and Wang, Z., 2021. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated micedagger. Biol. Reprod. 105, 789-807.
    Xu, K., Yang, L., Zhang, L., and Qi, H., 2020. Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility. Development 147, dev181057.
    Young, S.A., Miyata, H., Satouh, Y., Aitken, R.J., Baker, M.A., and Ikawa, M., 2016. CABYR is essential for fibrous sheath integrity and progressive motility in mouse spermatozoa. J. Cell Sci. 129, 4379-4387.
    Yuan, Y., Xu, W.Q., Chen, Z.Y., Chen, Y., Zhang, L., Zheng, L., Luo, T., and Chen, H.Y., 2022. Successful outcomes of intracytoplasmic sperm injection-embryo transfer using ejaculated spermatozoa from two Chinese asthenoteratozoospermic brothers with a compound heterozygous FSIP2 mutation. Andrologia 54, e14351.
    Zhang, R., Wu, B., Liu, C., Zhang, Z., Wang, X., Wang, L., Xiao, S., Chen, Y., Wei, H., Jiang, H., et al., 2022a. CCDC38 is required for sperm flagellum biogenesis and male fertility in mice. Development 149, dev200516.
    Zhang, X., Zheng, R., Liang, C., Liu, H., Zhang, X., Ma, Y., Liu, M., Zhang, W., Yang, Y., Liu, M., et al., 2022b. Loss-of-function mutations in CEP78 cause male infertility in humans and mice. Sci. Adv. 8, eabn0968.
    Zhang, X.Z., Wei, L.L., Jin, H.J., Zhang, X.H., and Chen, S.R., 2022c. The perinuclear theca protein Calicin helps shape the sperm head and maintain the nuclear structure in mice. Cell Reports 40, 111049.
    Zhang, X.Z., Wei, L.L., Zhang, X.H., Jin, H.J., and Chen, S.R., 2022d. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice. Development 149, dev200489.
    Zheng, R., Wang, Y., Li, Y., Guo, J., Wen, Y., Jiang, C., Yang, Y., and Shen, Y., 2023. FSIP2 plays a role in the acrosome development during spermiogenesis. J. Med. Genet. 60, 254-264.
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  33
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-09-06
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回