留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae

Mingxv Li Haoyu Wang Shilong Tian Yan Zhu Yijing Zhang

Mingxv Li, Haoyu Wang, Shilong Tian, Yan Zhu, Yijing Zhang. Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.014
引用本文: Mingxv Li, Haoyu Wang, Shilong Tian, Yan Zhu, Yijing Zhang. Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae[J]. 遗传学报. doi: 10.1016/j.jgg.2023.09.014
Mingxv Li, Haoyu Wang, Shilong Tian, Yan Zhu, Yijing Zhang. Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.014
Citation: Mingxv Li, Haoyu Wang, Shilong Tian, Yan Zhu, Yijing Zhang. Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.014

Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae

doi: 10.1016/j.jgg.2023.09.014
基金项目: 

This study was supported by State Key Laboratory of Crop Gene Exploration and Utilization in Southwest (SKL-KF202305) and State Key Laboratory of Genetic Engineering (SKLGE-2312).

详细信息
    通讯作者:

    Yan Zhu,E-mail:zhu_yan@fudan.edu.cn

    Yijing Zhang,E-mail:zhangyijing@fudan.edu.cn

Triticeae-BGC: a Web-based platform for detecting, annotating and evolutionary analysis of biosynthetic gene clusters in Triticeae

Funds: 

This study was supported by State Key Laboratory of Crop Gene Exploration and Utilization in Southwest (SKL-KF202305) and State Key Laboratory of Genetic Engineering (SKLGE-2312).

  • Boycheva, S., Daviet, L., Wolfender, J.-L., Fitzpatrick, T.B., 2014. The rise of operon-like gene clusters in plants. Trends Plant Sci. 19, 447-459.
    Chae, L., Kim, T., Nilo-Poyanco, R., Rhee, S.Y., 2014. Genomic signatures of specialized metabolism in plants. Science 344, 510-513.
    Cimermancic, P., Medema, M.H., Claesen, J., Kurita, K., Wieland Brown, L.C., Mavrommatis, K., Pati, A., Godfrey, P.A., Koehrsen, M., Clardy, J., et al., 2014. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412-421.
    Doroghazi, J.R., Albright, J.C., Goering, A.W., Ju, K.-S., Haines, R.R., Tchalukov, K.A., Labeda, D.P., Kelleher, N.L., Metcalf, W.W., 2014. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963-968.
    Field, B., Osbourn, A.E., 2008. Metabolic diversification——independent assembly of operon-like gene clusters in different plants. Science 320, 543-547.
    Frey, M., Schullehner, K., Dick, R., Fiesselmann, A., Gierl, A., 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants.Phytochemistry, Evolution of Metabolic Diversity 70, 1645-1651.
    International Wheat Genome Sequencing Consortium (IWGSC), 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
    Kautsar, S.A., Suarez Duran, H.G., Blin, K., Osbourn, A., Medema, M.H., 2017.plantiSMASH:automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res. 45, W55-W63.
    Liu, J., Yao, Y., Xin, M., Peng, H., Ni, Z., Sun, Q., 2021. Shaping polyploid wheat for success:Origins, domestication, and the genetic improvement of agronomic traits. J.Integr. Plant Biol. jipb.13210.
    Medema, M.H., Cimermancic, P., Sali, A., Takano, E., Fischbach, M.A., 2014. A systematic computational analysis of biosynthetic gene cluster evolution:lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016.
    Polturak, G., Dippe, M., Stephenson, M.J., Chandra Misra, R., Owen, C., Ramirez-Gonzalez, R.H., Haidoulis, J.F., Schoonbeek, H.-J., Chartrain, L., Borrill, P., et al., 2022.
    Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proc. Natl. Acad. Sci. U. S. A. 119, e2123299119.
    van der Lee, T.A.J., Medema, M.H., 2016. Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet. Biol. FG B 89, 29-36.
    Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., et al., 2012. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49.
    Zhang, D., Bai, G., Zhu, C., Yu, J., Carver, B.F., 2010. Genetic Diversity, Population Structure, and Linkage Disequilibrium in U.S. Elite Winter Wheat. Plant Genome 3.
    Ziemert, N., Lechner, A., Wietz, M., Millán-Aguiñaga, N., Chavarria, K.L., Jensen, P.R., 2014. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U. S. A. 111, E1130-1139.
  • 加载中
计量
  • 文章访问数:  210
  • HTML全文浏览量:  103
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 录用日期:  2023-09-23
  • 修回日期:  2023-09-21
  • 网络出版日期:  2023-10-06

目录

    /

    返回文章
    返回