留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement

Wenqi Ouyang Hongda Sun Yuan Wang

Wenqi Ouyang, Hongda Sun, Yuan Wang. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement[J]. 遗传学报, 2025, 52(8): 987-1000. doi: 10.1016/j.jgg.2024.12.011
引用本文: Wenqi Ouyang, Hongda Sun, Yuan Wang. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement[J]. 遗传学报, 2025, 52(8): 987-1000. doi: 10.1016/j.jgg.2024.12.011
Wenqi Ouyang, Hongda Sun, Yuan Wang. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement[J]. Journal of Genetics and Genomics, 2025, 52(8): 987-1000. doi: 10.1016/j.jgg.2024.12.011
Citation: Wenqi Ouyang, Hongda Sun, Yuan Wang. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement[J]. Journal of Genetics and Genomics, 2025, 52(8): 987-1000. doi: 10.1016/j.jgg.2024.12.011

Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement

doi: 10.1016/j.jgg.2024.12.011
基金项目: 

We would like to apologize to authors whose work could not be cited in this review due to the space limits. Research on small RNAs and application in Yuan Wang’s lab is supported by Biological Breeding-National Science and Technology Major Project (2023ZD04073).

详细信息
    通讯作者:

    Yuan Wang,E-mail:yuan.wang@genetics.ac.cn

Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement

Funds: 

We would like to apologize to authors whose work could not be cited in this review due to the space limits. Research on small RNAs and application in Yuan Wang’s lab is supported by Biological Breeding-National Science and Technology Major Project (2023ZD04073).

  • 摘要: Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21- to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication—an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of sRNAs action, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
  • Agrawal, N., Dasaradhi, P., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., Mukherjee, S.K., 2003. RNA interference: biology, mechanism, and applications. Mol. Biol. Rev. 67, 657-685.
    Allen, E., Xie, Z., Gustafson, A.M., Carrington, J.C., 2005. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221.
    An, Y.C., Goettel, W., Han, Q., Bartels, A., Liu, Z., Xiao, W., 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 7, 12263.
    Araki, S., Le NT, Koizumi, K., Villar-Briones, A., Nonomura, K.I., Endo, M., Inoue, H., Saze, H., Komiya, R., 2020. MiR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat. Commun. 11, 3115.
    Arikit, S., Xia, R., Kakrana, A., Huang, K., Zhai, J., Yan, Z., Valdes-Lopez, O., Prince, S., Musket, T.A., Nguyen, H.T. et al., 2014. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584-4601.
    Aukerman, M.J., Sakai, H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its apetala2-like target genes. Plant Cell 15, 2730-2741.
    Bai, H., Dai, Y., Fan, P., Zhou, Y., Wang, X., Chen, J., Jiao, Y., Du, C., Huang, Z., Xie, Y., 2024. The methyltransferase b-serrate interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification. J. Integr. Plant Biol. 66, 2613-2631.
    Bao, N., Lye, K.W., Barton, M.K., 2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7, 653-662.
    Basso, M.F., Ferreira, P., Kobayashi, A.K., Harmon, F.G., Nepomuceno, A.L., Molinari, H., Grossi-de-Sa, M.F., 2019. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol. J. 17, 1482-1500.
    Berube, B., Ernst, E., Cahn, J., Roche, B., de Santis, A.C., Lynn, J., Scheben, A., Grimanelli, D., Siepel, A., Ross-Ibarra, J. et al., 2024. Teosinte pollen drive guides maize diversification and domestication by RNAi. Nature 633, 380-388.
    Bologna, N.G., Voinnet, O., 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473-503.
    Borges, F., Martienssen, R.A., 2015. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727-741.
    Borges, F., Parent, J.S., van Ex, F., Wolff, P., Martinez, G., Kohler, C., Martienssen, R.A., 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50, 186-192.
    Borrill, P., Adamski, N., Uauy, C., 2015. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008-1022.
    Bustos-Sanmamed, P., Mao, G., Deng, Y., Elouet, M., Khan, G.A., Bazin, J., Turner, M., Subramanian, S., Yu, O., Crespi, M. et al., 2013. Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago Truncatula. Funct. Plant Biol. 40, 1208-1220.
    Caetano-Anolles, G., Gresshoff, P.M., 1991. Plant genetic control of nodulation. Annu. Rev. Microbiol. 45, 345-382.
    Cai, Z., Wang, Y., Zhu, L., Tian, Y., Chen, L., Sun, Z., Ullah, I., Li, X., 2017. GmTIR1/gmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol. 215, 672-686.
    Canto-Pastor, A., Santos, B., Valli, A.A., Summers, W., Schornack, S., Baulcombe, D.C., 2019. Enhanced resistance to bacterial and oomycete pathogens by short tandem target MIMIC RNAs in tomato. Proc. Natl. Acad. Sci. U. S. A. 116, 2755-2760.
    Cao, D., Li, Y., Wang, J., Nan, H., Wang, Y., Lu, S., Jiang, Q., Li, X., Shi, D., Fang, C. et al., 2015. GmmiR156b overexpression delays flowering time in soybean. Plant Mol. Biol. 89, 353-363.
    Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vaten, A., Thitamadee, S. et al., 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316-321.
    Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H. et al., 2015. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195.
    Chen, X., 2004. A microrna as a translational repressor of apetala2 in Arabidopsis flower development. Science 303, 2022-2025.
    Chen, X., Rechavi, O., 2022. Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell Biol. 23, 185-203.
    Chen, M., Wang, L., Zheng, X., Cohen, M., Li, X., 2021. Cross-kingdom comparative transcriptomics reveals conserved genetic modules in response to cadmium stress. mSystems 6, e0118921.
    Chuck, G., Cigan, A.M., Saeteurn, K., Hake, S., 2007. The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 39, 544-549.
    Combier, J.P., Frugier, F., de Billy, F., Boualem, A., El-Yahyaoui, F., Moreau, S., Vernie, T., Ott, T., Gamas, P., Crespi, M. et al., 2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago Truncatula. Genes Dev. 20, 3084-3088.
    Couzigou, J.M., Combier, J.P., 2016. Plant micrornas: key regulators of root architecture and biotic interactions. New Phytol 212, 22–35.
    De Luis, A., Markmann, K., Cognat, V., Holt, D.B., Charpentier, M., Parniske, M., Stougaard, J., Voinnet, O., 2012. Two micrornas linked to nodule infection and nitrogen-fixing ability in the legume lotus japonicus. Plant Physiol 160, 2137–54.
    Debelle, F., 2015. The medicago truncatula genome. Biological Nitrogen Fixation 787-798.
    Deng, F., Zeng, F., Shen, Q., Abbas, A., Cheng, J., Jiang, W., Chen, G., Shah, A.N., Holford, P., Tanveer, M. et al., 2022. Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci. 27, 890-907.
    Desbrosses, G.J., Stougaard, J., 2011. Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10, 348-358.
    Ding, X., Guo, J., Lv, M., Wang, H., Sheng, Y., Liu, Y., Gai, J., Yang, S., 2023. The miR156b-gmSPL2b module mediates male fertility regulation of cytoplasmic male sterility-based restorer line under high-temperature stress in soybean. Plant Biotechnol. J. 21, 1542-1559.
    Dunoyer, P., Melnyk, C., Molnar, A., Slotkin, R.K., 2013. Plant mobile small RNAs. Cold Spring Harb Perspect Biol. 5, a017897.
    Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., Bowman, J.L., 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768-1774.
    Fahlgren, N., Montgomery, T.A., Howell, M.D., Allen, E., Dvorak, S.K., Alexander, A.L., Carrington, J.C., 2006. Regulation of auxin response factor3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16, 939-944.
    Fan, K., Wang, Z., Sze, C.C., Niu, Y., Wong, F.L., Li, M.W., Lam, H.M., 2023. Microrna 4407 modulates nodulation in soybean by repressing a root-specific isopentenyltransferase (gmipt3). New Phytol 240, 1034–1051.
    Fan, Y., Yang, J., Mathioni, S.M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C. et al., 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Nat. Acad. Sci. U. S. A. 113, 15144-15149.
    Fang, R., 2024. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection. Sci. China Life Sci. 67, 626-628.
    Fang, X., Cui, Y., Li, Y., Qi, Y., 2015. Transcription and processing of primary microRNAs are coupled by elongator complex in Arabidopsis. Nat. Plants 1, 15075.
    Fei, Q., Xia, R., Meyers, B.C., 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25, 2400-2415.
    Feng, Y., Qi, N., Lei, P., Wang, Y., Xuan, Y., Liu, X., Fan, H., Chen, L., Duan, Y., Zhu, X., 2022. Gma-miR408 enhances soybean cyst nematode susceptibility by suppressing reactive oxygen species accumulation. Int. J. Mol. Sci. 23, 14022.
    Ferguson, B.J., Mens, C., Hastwell, A.H., Zhang, M., Su, H., Jones, C.H., Chu, X., Gresshoff, P.M., 2019. Legume nodulation: the host controls the party. Plant Cell Environ. 42, 41-51.
    Garcia, D., Collier, S.A., Byrne, M.E., Martienssen, R.A., 2006. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol. 16, 933-938.
    Gouil, Q., Baulcombe, D.C., 2016. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526.
    Grover, J.W., Kendall, T., Baten, A., Burgess, D., Freeling, M., King, G.J., Mosher, R.A., 2018. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica Rapa. Plant J. 94, 575-582.
    Guan, X., Pang, M., Nah, G., Shi, X., Ye, W., Stelly, D.M., Chen, Z.J., 2014. MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5, 3050.
    Gupta, K., Mishra, S.K., Gupta, S., Pandey, S., Panigrahi, J., Wani, S.H., 2021. Functional role of miRNAs: key players in soybean improvement. Phyton 90, 1339.
    Hao, P., Jian, C., Hao, C., Liu, S., Hou, J., Liu, H., Liu, H., Zhang, X., Zhao, H., Li, T., 2024. Coordination of miR319-taPCF8 with taSPL14 orchestrates auxin signaling and biosynthesis to regulate plant height in common wheat. J. Integr. Plant Biol. 66, 2362-2378.
    Hastwell, A.H., Corcilius, L., Williams, J.T., Gresshoff, P.M., Payne, R.J., Ferguson, B.J., 2019. Triarabinosylation is required for nodulation-suppressive cle peptides to systemically inhibit nodulation in Pisum sativum. Plant Cell Environ. 42, 188-197.
    Hoang, N.T., Toth, K., Stacey, G., 2020. The role of microRNAs in the legume-rhizobium nitrogen-fixing symbiosis. J. Exp. Bot. 71, 1668-1680.
    Hobecker, K.V., Reynoso, M.A., Bustos-Sanmamed, P., Wen, J., Mysore, K.S., Crespi, M., Blanco, F.A., Zanetti, M.E., 2017. The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol. 174, 2469-2486.
    Hou, Y., Zhai, Y., Feng, L., Karimi, H.Z., Rutter, B.D., Zeng, L., Choi, D.S., Zhang, B., Gu, W., Chen, X. et al., 2019. A phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25, 153-165.
    Huang, S.C., Lu, G.H., Tang, C.Y., Ji, Y., Tan, G.S., Hu, D.Q., Cheng, J., Wang, G.H., Qi, J.L., Yang, Y.H., 2018. Identification and comparative analysis of aluminum-induced microRNAs conferring plant tolerance to aluminum stress in soybean. Biol. Plant 62, 97-108.
    Huang, T., Li, Y., Wang, W., Xu, L., Li, J., Qi, Y., 2022. Evolution of lmiRNAs and their targets from mites for rice adaptation. J. Integr. Plant Biol. 64, 2411-2424.
    Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., Chiou, T.J., 2009. Uncovering small rna-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120-2132.
    Ji, L., Mathioni, S.M., Johnson, S., Tucker, D., Bewick, A.J., Do Kim, K., Daron, J., Slotkin, R.K., Jackson, S.A., Parrott, W.A., 2019. Genome-wide reinforcement of dna methylation occurs during somatic embryogenesis in soybean. Plant Cell 31, 2315-2331.
    Jia, J., Ji, R., Li, Z., Yu, Y., Nakano, M., Long, Y., Feng, L., Qin, C., Lu, D., Zhan, J. et al., 2020. Soybean dicer-like2 regulates seed coat color via production of primary 22-nucleotide small interfering rnas from long inverted repeats. Plant Cell 32, 3662-3673.
    Jian, C., Hao, P., Hao, C., Liu, S., Mao, H., Song, Q., Zhou, Y., Yin, S., Hou, J., Zhang, W. et al., 2022. The miR319/taGAMYB3 module regulates plant architecture and improves grain yield in common wheat (Triticum aestivum). New Phytol. 235, 1515-1530.
    Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X. et al., 2010. Regulation of osSPL14 by osmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.
    Jones-Rhoades, M.W., Bartel, D.P., Bartel, B., 2006. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19-53.
    Jung, J.H., Seo, P.J., Kang, S.K., Park, C.M., 2011. MiR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 76, 35-45.
    Kawashima, C.G., Matthewman, C.A., Huang, S., Lee, B.R., Yoshimoto, N., Koprivova, A., Rubio-Somoza, I., Todesco, M., Rathjen, T., Saito, K. et al., 2011. Interplay of slIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J. 66, 863-876.
    Kim, Y.J., Zheng, B., Yu, Y., Won, S.Y., Mo, B., Chen, X., 2011. The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 30, 814-822.
    Kirolinko, C., Hobecker, K., Cueva, M., Botto, F., Christ, A., Niebel, A., Ariel, F., Blanco, F.A., Crespi, M., Zanetti, M.E., 2024. A lateral organ boundaries domain transcription factor acts downstream of the auxin response factor 2 to control nodulation and root architecture in Medicago Truncatula. New Phytol. 242, 2746-2762.
    Kuhle, B., Chen, Q., Schimmel, P., 2023. Trna renovatio: rebirth through fragmentation. Mol. Cell. 83, 3953-3971.
    Kumar, P., Kuscu, C., Dutta, A., 2016. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci. 41, 679-689.
    Lambert, M., Benmoussa, A., Provost, P., 2019. Small non-coding rnas derived from eukaryotic ribosomal rna. Noncoding RNA 5.
    Lei, P., Qi, N., Zhou, Y., Wang, Y., Zhu, X., Xuan, Y., Liu, X., Fan, H., Chen, L., Duan, Y., 2021. Soybean miR159-gmMYB33 regulatory network involved in gibberellin-modulated resistance to heterodera glycines. Int. J. Mol. Sci. 22, 13172.
    Lelandais-Briere, C., Moreau, J., Hartmann, C., Crespi, M., 2016. Noncoding RNAs, emerging regulators in root endosymbioses. Mol. Plant Microbe Interact 29, 170-180.
    Li, H., Deng, Y., Wu, T., Subramanian, S., Yu, O., 2010. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol. 153, 1759-1770.
    Li, J., Zhang, W., Lu, Q., Sun, J., Cheng, C., Huang, S., Li, S., Li, Q., Zhang, W., Zhou, C. et al., 2024. GmDFB1, an arm-repeat superfamily protein, regulates floral organ identity through repressing siRNA- and miRNA-mediated gene silencing in soybean. J. Integr. Plant Biol. 66, 1620-1638.
    Li, S., Wang, X., Xu, W., Liu, T., Cai, C., Chen, L., Clark, C.B., Ma, J., 2021. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7, 50-59.
    Liu, Q., 2019. Genomic and genetic resource for soybean disease resistance improvement., Vol.,ed. University of Illinois at Urbana-Champaign.
    Liu, S., Jaouannet, M., Dempsey, D.A., Imani, J., Coustau, C., Kogel, K.H., 2020. RNA-based technologies for insect control in plant production. Biotechnol Adv. 39, 107463.
    Liu, Y., Teng, C., Xia, R., Meyers, B.C., 2020. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32, 3059-3080.
    Liu, Y., Guo, P., Wang, J., Xu, Z.Y., 2023. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. Plant J. 113, 1122-1145.
    Long, J., Walker, J., She, W., Aldridge, B., Gao, H., Deans, S., Vickers, M., Feng, X., 2021. Nurse cell--derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373, eabh0556.
    Luo, Q.J., Mittal, A., Jia, F., Rock, C.D., 2012. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol. Biol. 80, 117-129.
    Lv, D., Ge, Y., Jia, B., Bai, X., Bao, P., Cai, H., Ji, W., Zhu, Y., 2012. MiR167c is induced by high alkaline stress and inhibits two auxin response factors in Glycine soja. J. Plant Biol. 55, 373-380.
    Marin, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., Nussaume, L., Crespi, M.D., Maizel, A., 2010. MiR390, Arabidopsis TAS3 tasiRNAs, and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22, 1104-1117.
    Martinez, G., Wolff, P., Wang, Z., Moreno-Romero, J., Santos-Gonzalez, J., Conze, L.L., DeFraia, C., Slotkin, R.K., Kohler, C., 2018. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50, 193-198.
    Matera, A.G., Terns, R.M., Terns, M.P., 2007. Non-coding rnas: lessons from the small nuclear and small nucleolar rnas. Nat. Rev. Mol. Cell Biol. 8, 209–20.
    Matzke, M.A., Mosher, R.A., 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394-408.
    McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., Barton, M.K., 2001. Role of phabulosa and phavoluta in determining radial patterning in shoots. Nature 411, 709-713.
    McLean, B.G., Hempel, F.D., Zambryski, P.C., 1997. Plant intercellular communication via plasmodesmata. Plant Cell 9, 1043-1054.
    Melnyk, C.W., Molnar, A., Baulcombe, D.C., 2011. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553-3563.
    Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., Ashikari, M., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549.
    Nagasaki, H., Itoh, J., Hayashi, K., Hibara, K., Satoh-Nagasawa, N., Nosaka, M., Mukouhata, M., Ashikari, M., Kitano, H., Matsuoka, M. et al., 2007. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc. Natl. Acad. Sci. U. S. A. 104, 14867-14871.
    Nitnavare, R.B., Bhattacharya, J., Singh, S., Kour, A., Hawkesford, M.J., Arora, N., 2021. Next generation dsRNA-based insect control: success so far and challenges. Front. Plant Sci. 12, 673576.
    Niyikiza, D., Piya, S., Routray, P., Miao, L., Kim, W.S., Burch-Smith, T., Gill, T., Sams, C., Arelli, P.R., Pantalone, V. et al., 2020. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. Plant J. 103, 1744-1766.
    Nogueira, F.T., Madi, S., Chitwood, D.H., Juarez, M.T., Timmermans, M.C., 2007. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 21, 750-755.
    Noman, A., Sanaullah, T., Khalid, N., Islam, W., Khan, S., Irshad, M.K., Aqeel, M., 2019. Crosstalk between plant miRNA and heavy metal toxicity. Plant metallomics and functional omics: a system-wide perspective 145-168.
    OECD, 2023. Considerations for the human health risk assessment of externally applied dsRNA-based pesticides, Series on Pesticides and Biocides. OECD Publishing, Paris. https://doi.org/10.1787/54852048-en.
    Okuma, N., Soyano, T., Suzaki, T., Kawaguchi, M., 2020. MiR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in lotus japonicus. Nat. Commun. 11, 5192.
    Otero, S., Helariutta, Y., Benitez-Alfonso, Y., 2016. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29, 21-28.
    Othman, S., Mustaffa, A.F., Che-Othman, M.H., Samad, A., Goh, H.H., Zainal, Z., Ismail, I., 2023. Overview of repressive mirna regulation by short tandem target mimic (STTM): applications and impact on plant biology. Plants (Basel) 12, 669.
    Panstruga, R., Spanu, P., 2024. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. New Phytol. 241, 567-577.
    Pant, B.D., Buhtz, A., Kehr, J., Scheible, W.R., 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738.
    Pant, B.D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., Scheible, W.R., 2009. Identification of nutrient-responsive Arabidopsis and Rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541-1555.
    Pan, W.J., Tao, J.J., Cheng, T., Bian, X.H., Wei, W., Zhang, W.K., Ma, B., Chen, S.Y., Zhang, J.S., 2016. Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol. Plant 9, 1337-1340.
    Park, J.H., Shin, C., 2015. The role of plant small RNAs in NB-LRR regulation. Brief Funct. Genomics. 14, 268-274.
    Piya, S., Lopes-Caitar, V.S., Kim, W.S., Pantalone, V., Krishnan, H.B., Hewezi, T., 2021. Title: hypermethylation of mirna genes during nodule development. Front. Mol. Biosci. 8, 616623.
    Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Nino, S.J., Hamby, R., Heller, J., Zhao, H., Glass, N.L., Judelson, H.S. et al., 2021. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J. 19, 1756-1768.
    Rajagopalan, R., Vaucheret, H., Trejo, J., Bartel, D.P., 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407-3425.
    Rambani, A., Hu, Y., Piya, S., Long, M., Rice, J.H., Pantalone, V., Hewezi, T., 2020. Identification of differentially methylated miRNA genes during compatible and incompatible interactions between soybean and soybean cyst nematode. Mol. Plant Microbe Interact 33, 1340-1352.
    Ramesh, S.V., Govindasamy, V., Rajesh, M.K., Sabana, A.A., Praveen, S., 2019. Stress-responsive miRNAome of Glycine max (l.) Merrill: molecular insights and way forward. Planta 249, 1267-1284.
    Reid, D.E., Ferguson, B.J., Gresshoff, P.M., 2011. Inoculation- and nitrate-induced cle peptides of soybean control nark-dependent nodule formation. Mol. Plant Microbe Interact 24, 606-618.
    Ren, B., Wang, X., Duan, J., Ma, J., 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919-922.
    Rodrigues, T.B., Mishra, S.K., Sridharan, K., Barnes, E.R., Alyokhin, A., Tuttle, R., Kokulapalan, W., Garby, D., Skizim, N.J., Tang, Y.W. et al., 2021. First sprayable double-stranded rna-based biopesticide product targets proteasome subunit beta type-5 in colorado potato beetle (leptinotarsa decemlineata). Front. Plant Sci. 12, 728652.
    Sager, R., Lee, J.Y., 2014. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J. Exp. Bot. 65, 6337-6358.
    Sha, A., Chen, Y., Ba, H., Shan, Z., Zhang, X., Wu, X., Qiu, D., Chen, S., Zhou, X., 2012. Identification of glycine max micrornas in response to phosphorus deficiency. Journal of Plant Biology 55, 268–280.
    Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., Bernal-Galeano, V., Phifer, T., DePamphilis, C.W., Westwood, J.H. et al., 2018. MicroRNAs from the parasitic plant cuscuta campestris target host messenger RNAs. Nature 553, 82-85.
    Simon, S.A., Meyers, B.C., Sherrier, D.J., 2009. MicroRNAs in the rhizobia legume symbiosis. Plant Physiol. 151, 1002-1008.
    Sorin, C., Declerck, M., Christ, A., Blein, T., Ma, L., Lelandais-Briere, C., Njo, M.F., Beeckman, T., Crespi, M., Hartmann, C., 2014. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol. 202, 1197-1211.
    Sun, M., Jing, Y., Wang, X., Zhang, Y., Zhang, Y., Ai, J., Li, J., Jin, L., Li, W., Li, Y., 2020. Gma-miR1508a confers dwarfing, cold tolerance, and drought sensitivity in soybean. Mol. Breed. 40, 1-13.
    Su, Z., Zhao, L., Zhao, Y., Li, S., Won, S., Cai, H., Wang, L., Li, Z., Chen, P., Qin, Y., 2017. The tho complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr. Biol. 27, 1597-1609.
    Sun, Z., Su, C., Yun, J., Jiang, Q., Wang, L., Wang, Y., Cao, D., Zhao, F., Zhao, Q., Zhang, M. et al., 2019. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of gmmiR156b. Plant Biotechnol. J. 17, 50-62.
    Tang, J., Chu, C., 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants. 3, 17077.
    Teng, C., Zhang, H., Hammond, R., Huang, K., Meyers, B.C., Walbot, V., 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912.
    Thiebaut, F., Rojas, C.A., de Oliveira Silva, L., Grativol, C., Hemerly, A.S., Ferreira, P.C.G., 2020. Role of small RNA in plant interaction with microbes. In: Plant Small RNA Vol.,ed. Elsevier, pp. 299-319.
    Thomson, D.W., Dinger, M.E., 2016. Endogenous microrna sponges: evidence and controversy. Nat. Rev. Genet. 17, 272-283.
    Tian, R., Wang, F., Zheng, Q., Niza, V., Downie, A.B., Perry, S.E., 2020. Direct and indirect targets of the Arabidopsis seed transcription factor abscisic acid insensitive3. Plant J. 103, 1679-1694.
    Tilsner, J., Nicolas, W., Rosado, A., Bayer, E.M., 2016. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu. Rev. Plant Biol. 67, 337-364.
    Tiwari, M., Pandey, V., Singh, B., Bhatia, S., 2021. Dynamics of miRNA mediated regulation of legume symbiosis. Plant Cell Environ. 44, 1279-1291.
    Tsikou, D., Yan, Z., Holt, D.B., Abel, N.B., Reid, D.E., Madsen, L.H., Bhasin, H., Sexauer, M., Stougaard, J., Markmann, K., 2018. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362, 233-236.
    Turnbull, C., Lopez-Cobollo, R.M., 2013. Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol. 198, 33-51.
    Turner, M., Nizampatnam, N.R., Baron M, Coppin, S., Damodaran, S., Adhikari, S., Arunachalam, S.P., Yu, O., Subramanian, S., 2013. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol. 162, 2042-2055.
    Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., Crete, P., 2004. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell. 16, 69-79.
    Voinnet, O., 2022. Revisiting small RNA movement in plants. Nat. Rev. Mol. Cell Biol. 23, 163-164.
    Wang, J.W., Czech, B., Weigel, D., 2009. MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749.
    Wang, L., Song, X., Gu, L., Li, X., Cao, S., Chu, C., Cui, X., Chen, X., Cao, X., 2013. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 25, 715-727.
    Wang, L., Sun, Z., Su, C., Wang, Y., Yan, Q., Chen, J., Ott, T., Li, X., 2019. A gmNINA-miR172c-NNC1 regulatory network coordinates the nodulation and autoregulation of nodulation pathways in soybean. Mol. Plant 12, 1211-1226.
    Wang, W., Duan, J., Wang, X., Feng, X., Chen, L., Clark, C.B., Swarm, S.A., Wang, J., Lin, S., Nelson, R.L. et al., 2024. Long noncoding RNAs underlie multiple domestication traits and leafhopper resistance in soybean. Nat. Genet. 56, 1270-1277.
    Wang, Y., Wang, L., Zou, Y., Chen, L., Cai, Z., Zhang, S., Zhao, F., Tian, Y., Jiang, Q., Ferguson, B.J. et al., 2014. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26, 4782-4801.
    Wang, Y., Le, B.H., Wang, J., You, C., Zhao, Y., Galli, M., Xu, Y., Gallavotti, A., Eulgem, T., Mo, B., 2022. ZMP recruits and excludes pol IV-mediated DNA methylation in a site-specific manner. Sci. Adv. 8, eadc9454.
    Wang, Z., Ma, Z., Castillo-Gonzalez, C., Sun, D., Li, Y., Yu, B., Zhao, B., Li, P., Zhang, X., 2018. SWI2/SNF2 atpase chr2 remodels pri-miRNAs via serrate to impede miRNA production. Nature 557, 516-521.
    Wang, Z., Butel, N., Santos-Gonzalez, J., Borges, F., Yi, J., Martienssen, R.A., Martinez, G., Kohler, C., 2020. Polymerase IV plays a crucial role in pollen development in capsella. Plant Cell 32, 950-966.
    Weiberg, A., Bellinger, M., Jin, H., 2015. Conversations between kingdoms: small RNAs. Curr. Opin. Biotechnol. 32, 207-215.
    Wen, H.G., Zhao, J.H., Zhang, B.S., Gao, F., Wu, X.M., Yan, Y.S., Zhang, J., Guo, H.S., 2023. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. Nat. Plants 9, 1409-1418.
    Williams, L., Carles, C.C., Osmont, K.S., Fletcher, J.C., 2005. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc. Natl. Acad. Sci. U. S. A. 102, 9703-9708.
    Wong, C.E., Zhao, Y.T., Wang, X.J., Croft, L., Wang, Z.H., Haerizadeh, F., Mattick, J.S., Singh, M.B., Carroll, B.J., Bhalla, P.L., 2011. MicroRNAs in the shoot apical meristem of soybean. J. Exp. Bot. 62, 2495-2506.
    Wong, J., Gao, L., Yang, Y., Zhai, J., Arikit, S., Yu, Y., Duan, S., Chan, V., Xiong, Q., Yan, J. et al., 2014. Roles of small RNAs in soybean defense against phytophthora sojae infection. Plant J. 79, 928-940.
    Wu, H., Li, B., Iwakawa, H.O., Pan, Y., Tang, X., Ling-Hu, Q., Liu, Y., Sheng, S., Feng, L., Zhang, H. et al., 2020. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581, 89-93.
    Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., Qi, Y., 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38, 465-475.
    Xia, R., Xu, J., Meyers, B.C., 2017. The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29, 1232-1247.
    Xie, D., Chen, M., Niu, J., Wang, L., Li, Y., Fang, X., Li, P., Qi, Y., 2021. Phase separation of serrate drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol. 23, 32-39.
    Xie, H., Su, F., Niu, Q., Geng, L., Cao, X., Song, M., Dong, J., Zheng, Z., Guo, R., Zhang, Y. et al., 2024. Knockout of miR396 genes increases seed size and yield in soybean. J. Integr. Plant Biol. 66, 1148-1157.
    Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., Carrington, J.C., 2005. Expression of Arabidopsis miRNA genes. Plant Physiol. 138, 2145-2154.
    Xu, H., Li, Y., Zhang, K., Li, M., Fu, S., Tian, Y., Qin, T., Li, X., Zhong, Y., Liao, H., 2021. MiR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol. 229, 3377-3392.
    Xu, F., Liu, Q., Chen, L., Kuang, J., Walk, T., Wang, J., Liao, H., 2013. Genome-wide identification of soybean micrornas and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics 14, 66.
    Xu, L., Yuan, K., Yuan, M., Meng, X., Chen, M., Wu, J., Li, J., Qi, Y., 2020. Regulation of rice tillering by RNA-directed DNA methylation at miniature inverted-repeat transposable elements. Mol. Plant 13, 851-863.
    Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., Wang, E., 2022. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 64, 244-267.
    Yang, X., Wang, J., Dai, Z., Zhao, X., Miao, X., Shi, Z., 2019. MiR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways. Rice (N Y) 12, 40.
    Yan, Z., Hossain, M.S., Arikit, S., Valdes-Lopez, O., Zhai, J., Wang, J., Libault, M., Ji, T., Qiu, L., Meyers, B.C. et al., 2015. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol. 207, 748-759.
    Yoon, E.K., Yang, J.H., Lim, J., Kim, S.H., Kim, S.K., Lee, W.S., 2010. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res. 38, 1382-1391.
    Yoshida, S., Cui, S., Ichihashi, Y., Shirasu, K., 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67, 643-667.
    Yoshikawa, M., Peragine, A., Park, M.Y., Poethig, R.S., 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164-2175.
    Yu, J.Y., Zhang, Z.G., Huang, S.Y., Han, X., Wang, X.Y., Pan, W.J., Qin, H.T., Qi, H.D., Yin, Z.G., Qu, K.X., et al., 2019. Analysis of mirnas targeted storage regulatory genes during soybean seed development based on transcriptome sequencing. Genes (Basel). doi: 10.
    Yuan, Y., Liu, Y., Han, L., Li, Y., Qi, Y., 2024. An RDDM-independent function of Pol V transcripts in gene regulation and plant defence. Nat. Plants 1-14.
    Yu, N., Christiaens, O., Liu, J., Niu, J., Cappelle, K., Caccia, S., Huvenne, H., Smagghe, G., 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci. 20, 4-14.
    Yun, J., Sun, Z., Jiang, Q., Wang, Y., Wang, C., Luo, Y., Zhang, F., Li, X., 2022. The miR156b-gmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytol. 233, 1881-1899.
    Yun, J., Wang, C., Zhang, F., Chen, L., Sun, Z., Cai, Y., Luo, Y., Liao, J., Wang, Y., Cha, Y. et al., 2023. A nitrogen fixing symbiosis-specific pathway required for legume flowering. Sci. Adv. 9, eade1150.
    Yu, Y., Jia, T., Chen, X., 2017. The 'how' and 'where' of plant microRNAs. New Phytol. 216, 1002-1017.
    Zand, K.H., Innes, R.W., 2022. Molecular mechanisms underlying host-induced gene silencing. Plant Cell 34, 3183-3199.
    Zhan, J., Meyers, B.C., 2023. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annu. Rev. Plant Biol. 74, 21-51.
    Zhang, J., Zhou, Z., Bai, J., Tao, X., Wang, L., Zhang, H., Zhu, J.K., 2020. Disruption of miR396e and miR396f improves rice yield under nitrogen-deficient conditions. Natl. Sci. Rev. 7, 102-112.
    Zhang, L., Peng, Y., Wei, X., Dai, Y., Yuan, D., Lu, Y., Pan, Y., Zhu, Z., 2014. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice. J. Exp. Bot. 65, 5989-6002.
    Zhang, M., Su, H., Gresshoff, P.M., Ferguson, B.J., 2021. Shoot-derived miR2111 controls legume root and nodule development. Plant Cell Environ. 44, 1627-1641.
    Zhang, S., Wang, Y., Li, K., Zou, Y., Chen, L., Li, X., 2014. Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean. Int. J. Mol. Sci. 15, 13596-13614.
    Zhang, S., Zhao, H., Liu, Z., Liu, K., Zhu, H., Pu, W., He, L., Wang, R.A., Zhou, B., 2022. Monitoring of cell-cell communication and contact history in mammals. Science 378, eabo5503.
    Zhang, T., Zhao, Y., Zhao, J., Wang, S., Jin, Y., Chen, Z., Fang, Y., Hua, C., Ding, S., Guo, H., 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. plants 2, 1-6.
    Zhang, Y.C., Yu, Y., Wang, C.Y., Li, Z.Y., Liu, Q., Xu, J., Liao, J.Y., Wang, X.J., Qu, L.H., Chen, F. et al., 2013. Overexpression of microRNA osmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31, 848-852.
    Zhao, C., Ma, J., Zhang, Y., Yang, S., Feng, X., Yan, J., 2022. The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean. J. Integr. Plant Biol. 64, 995-1006.
    Zhao, J., Liu, Q., Xie, Z., Guo, H., 2024. Exploring the challenges of RNAi-based strategies for crop protection. Adv. Biotechnol. 2, 23.
    Zhao, M., Liu, B., Wu, K., Ye, Y., Huang, S., Wang, S., Wang, Y., Han, R., Liu, Q., Fu, X. et al., 2015. Regulation of osmiR156h through alternative polyadenylation improves grain yield in rice. PLoS One 10, e0126154.
    Zhong, S., Li, X., Li, C., Bai, H., Chen, J., Gan, L., Zhu, J., Oh, T., Yan, X., Zhu, J. et al., 2024. Serrate drives phase separation behaviours to regulate m6A modification and miRNA biogenesis. Nat. Cell Biol. 26, 2129-2143.
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 录用日期:  2024-12-17
  • 修回日期:  2024-12-17
  • 刊出日期:  2024-12-21

目录

    /

    返回文章
    返回