Harness the wild: progress and perspectives in wheat genetic improvement
doi: 10.1016/j.jgg.2025.05.010
Harness the wild: progress and perspectives in wheat genetic improvement
-
摘要:
Common wheat (Triticum aestivum L.) is a staple hexaploid crop with numerous wild relatives. However, domestication and modern breeding have significantly narrowed its genetic diversity, diminishing its capacity to adapt to climate change. Wild relatives of wheat serve as a vital reservoir of genetic diversity, offering traits that enhance its resistance to various biotic and abiotic stresses. Over recent decades, remarkable progress has been made in utilizing superior genes from wild relatives to bolster wheat's defenses against diseases and pests, though the exploration of genes conferring abiotic stress tolerance has lagged behind. In this review, we summarize key advancements in the utilization of wild relatives for wheat enhancement over the past century, emphasizing both theoretical and technological innovations. Furthermore, we evaluate the potential contributions of wild relatives to address production challenges posed by climate changes. We also explore strategies for isolating superior genes and developing pre-breeding germplasm to support the future development of climate-resilient wheat varieties.
Abstract:Common wheat (Triticum aestivum L.) is a staple hexaploid crop with numerous wild relatives. However, domestication and modern breeding have significantly narrowed its genetic diversity, diminishing its capacity to adapt to climate change. Wild relatives of wheat serve as a vital reservoir of genetic diversity, offering traits that enhance its resistance to various biotic and abiotic stresses. Over recent decades, remarkable progress has been made in utilizing superior genes from wild relatives to bolster wheat's defenses against diseases and pests, though the exploration of genes conferring abiotic stress tolerance has lagged behind. In this review, we summarize key advancements in the utilization of wild relatives for wheat enhancement over the past century, emphasizing both theoretical and technological innovations. Furthermore, we evaluate the potential contributions of wild relatives to address production challenges posed by climate changes. We also explore strategies for isolating superior genes and developing pre-breeding germplasm to support the future development of climate-resilient wheat varieties.
-
Key words:
- Common wheat /
- Wild relatives /
- Biotic stress /
- Abiotic stress /
- Genetic improvement /
- Climate change
-

计量
- 文章访问数: 4
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0