摘要:
While conventional FISH and IHC methods struggle to decode complex tissue heterogeneity and comprehensive molecular diagnosis due to low-throughput spatial information, spatial omics technologies enable high-throughput molecular mapping across tissue microenvironments. These technologies are emerging as transformative tools in molecular diagnostics and medical research. By integrating histopathological morphology with spatial multi-omics profiling (genome, transcriptome, epigenome, and proteome), spatial omics technologies open an avenue for understanding disease progression, therapeutic resistance mechanisms, and precise diagnosis. It particularly enhances tumor microenvironment analysis by mapping immune cell distributions and functional states, which may greatly facilitate tumor molecular subtyping, prognostic assessment, and predicting the efficacy of radiotherapy and chemotherapy. Despite the substantial advancements in spatial omics, the translation of spatial omics into clinical applications remains challenging due to robustness, efficacy, clinical validation, and cost constraints. In this review, we will summarize the current progress and prospects of spatial omics technologies, particularly in medical research and diagnostic applications.
Abstract:
While conventional FISH and IHC methods struggle to decode complex tissue heterogeneity and comprehensive molecular diagnosis due to low-throughput spatial information, spatial omics technologies enable high-throughput molecular mapping across tissue microenvironments. These technologies are emerging as transformative tools in molecular diagnostics and medical research. By integrating histopathological morphology with spatial multi-omics profiling (genome, transcriptome, epigenome, and proteome), spatial omics technologies open an avenue for understanding disease progression, therapeutic resistance mechanisms, and precise diagnosis. It particularly enhances tumor microenvironment analysis by mapping immune cell distributions and functional states, which may greatly facilitate tumor molecular subtyping, prognostic assessment, and predicting the efficacy of radiotherapy and chemotherapy. Despite the substantial advancements in spatial omics, the translation of spatial omics into clinical applications remains challenging due to robustness, efficacy, clinical validation, and cost constraints. In this review, we will summarize the current progress and prospects of spatial omics technologies, particularly in medical research and diagnostic applications.