留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses

Fei Sun Yao Zhou Xing Zhao Qiuling Jie Linna Ma Dan Lin Yaxuan Li Yangqing Mai Ge Gao Yongfang Zhang Qi Li Yanlin Ma

Fei Sun, Yao Zhou, Xing Zhao, Qiuling Jie, Linna Ma, Dan Lin, Yaxuan Li, Yangqing Mai, Ge Gao, Yongfang Zhang, Qi Li, Yanlin Ma. Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses[J]. 遗传学报. doi: 10.1016/j.jgg.2025.09.007
引用本文: Fei Sun, Yao Zhou, Xing Zhao, Qiuling Jie, Linna Ma, Dan Lin, Yaxuan Li, Yangqing Mai, Ge Gao, Yongfang Zhang, Qi Li, Yanlin Ma. Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses[J]. 遗传学报. doi: 10.1016/j.jgg.2025.09.007
Fei Sun, Yao Zhou, Xing Zhao, Qiuling Jie, Linna Ma, Dan Lin, Yaxuan Li, Yangqing Mai, Ge Gao, Yongfang Zhang, Qi Li, Yanlin Ma. Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2025.09.007
Citation: Fei Sun, Yao Zhou, Xing Zhao, Qiuling Jie, Linna Ma, Dan Lin, Yaxuan Li, Yangqing Mai, Ge Gao, Yongfang Zhang, Qi Li, Yanlin Ma. Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2025.09.007

Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses

doi: 10.1016/j.jgg.2025.09.007
基金项目: 

This work was supported by the National Key R&D Program of China (2024YFA1802300), the Major Science and Technology Program of Hainan Province (ZDKJ2021037), the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (U24A20677) and Hainan Province Science and Technology Special Fund (ZDYF2020117, ZDYF2022SHFZ312), Hainan Province Science and Technology Project (LCXY202102, LCYX202203, LCYX202301, LCYX202502) and Innovative research project for postgraduate students in Hainan Medical University (HYYB2021A05), project supported by Hainan Province Clinical Medical Center, the specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202310). We thank all the investigators who participated in the present study and Basecare Medical Device Co., Ltd., Suzhou.

详细信息
    通讯作者:

    Qi Li,E-mail:liqi1970@hotmail.com

    Yanlin Ma,E-mail:mayanlinma@163.com

Application of an optimized non-invasive prenatal testing for thalassemia based on change of haplotype doses

Funds: 

This work was supported by the National Key R&D Program of China (2024YFA1802300), the Major Science and Technology Program of Hainan Province (ZDKJ2021037), the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (U24A20677) and Hainan Province Science and Technology Special Fund (ZDYF2020117, ZDYF2022SHFZ312), Hainan Province Science and Technology Project (LCXY202102, LCYX202203, LCYX202301, LCYX202502) and Innovative research project for postgraduate students in Hainan Medical University (HYYB2021A05), project supported by Hainan Province Clinical Medical Center, the specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202310). We thank all the investigators who participated in the present study and Basecare Medical Device Co., Ltd., Suzhou.

  • 摘要:

    Patients affected by monogenic diseases impose a substantial burden on both themselves and their families. The primary preventive measure, i.e., invasive prenatal diagnosis, carries a risk of miscarriage and cannot be performed early in pregnancy. Hence, there is a need for non-invasive prenatal testing (NIPT) for monogenic diseases. By utilizing enriched cell-free fetal DNA (cffDNA) from maternal plasma, we refine the NIPT method, which combines targeted region capture technology, haplotyping, and analysis of informative site frequency. We apply this method to 93 clinical families at genetic risk for thalassemia, encompassing various genetic variant types, to establish a workflow and evaluate its efficiency. Our approach requires only 3 ng of DNA input to generate 0.1 GB of informative target genomic data and leverages a minimum of 3% cffDNA. This method has a 98.16% success rate and 100% concordance with conventional invasive methods. Furthermore, we demonstrate the ability to analyze fetal genotypes as early as eight weeks of gestation. This study establishes an optimized NIPT method for the early detection of various thalassemia disorders during pregnancy. This technique demonstrates high accuracy and potential for clinical application in prenatal diagnosis.

  • Collaborators., G.D., 2020. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1160-120.
    Bedei, I., Wolter, A., Weber, A., Signore, F., Axt-Fliedner, R., 2021. Chances and challenges of New Genetic Screening Technologies (NIPT) in prenatal medicine from a clinical perspective: a narrative review. Genes 12, 501-514.
    Che, H., Villela, D., Dimitriadou, E., Melotte, C., Brison, N., Neofytou, M., Van Den Bogaert, K., Tsuiko, O., Devriendt, K., Legius, E., et al., 2020. Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet. Med. 22, 962-973.
    Chen, C., Li, R., Sun, J., Zhu, Y., Jiang, L., Li, J., Fu, F., Wan, J., Guo, F., An, X., et al., 2021. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome. Med. 13, 18-27.
    D'Aversa, E., Breveglieri, G., Boutou, E., Balassopoulou, A., Voskaridou, E., Pellegatti, P., Guerra, G., Scapoli, C., Gambari, R., Borgatti, M., 2022. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma. Int. J. Mol. Sci. 23, 2819-2834.
    Du, R.Q., Zhao, D.D., Kang, K., Wang, F., Xu, R.X., Chi, C.L., Kong, L.Y., Liang, B., 2022. A review of pre-implantation genetic testing technologies and applications. Reprod. Dev. Med. 7, 20-31.
    Erlich, H.A., Lopez-Pena, C., Carlberg, K.T., Shih, S., Bali, G., Yamaguchi, K.D., Salamon, H., Das, R., Lal, A., Calloway, C.D., 2022. Noninvasive prenatal test for β-Thalassemia and sickle cell disease using probe capture enrichment and next-generation sequencing of DNA in maternal plasma. J. Appl. Lab. Med. 7, 515-531.
    Fesahat, F., Montazeri, F., Hoseini, S.M., 2020. Preimplantation genetic testing in assisted reproduction. J. Gynecol. Obstet. Hum. Reprod. 49, 101723.
    Hui, W.W., Jiang, P., Tong, Y.K., Lee, W.S., Cheng, Y.K., New, M.I., Kadir, R.A., Chan, K.C., Leung, T.Y., Lo, Y.M., et al., 2017. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin. Chem. 63, 513-524.
    Jiang, F., Liu, W., Zhang, L., Guo, Y., Chen, M., Zeng, X., Wang, Y., Li, Y., Xian, J., Du, B., et al., 2021. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci. Rep. 11, 5714-5723.
    Johnson, V.E., Pramanik, S., Shudde, R., 2023. Bayes factor functions for reporting outcomes of hypothesis tests. Proc. Natl. Acad. Sci. U S A. 120, e2217331120.
    Kong, L., Li, S., Zhao, Z., Feng, J., Chen, G., Liu, L., Tang, W., Li, S., Li, F., Han, X., et al., 2021. Haplotype-based noninvasive prenatal diagnosis of 21 families with Duchenne Muscular Dystrophy: real-world clinical data in China. Front. Genet. 12, 791856.
    Li, S., Chen, J., Abdulaziz, A.T.A., Liu, Y., Wang, X., Lin, M., Qin, Y., Liu, X., Zhou, D., 2019. Epilepsy in China: Factors influencing marriage status and fertility. Seizure. 71, 179-184.
    Liang, B., Li, H., He, Q., Li, H., Kong, L., Xuan, L., Xia, Y., Shen, J., Mao, Y., Li, Y., et al., 2018. Enrichment of the fetal fraction in non-invasive prenatal screening reduces maternal background interference. Sci. Rep. 8, 17675.
    Lo, Y.M., Chan, K.C., Sun, H., Chen, E.Z., Jiang, P., Lun, F.M., Zheng, Y.W., Leung, T.Y., Lau, T.K., Cantor, C.R., et al., 2010. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91.
    Lun, F.M., Tsui, N.B., Chan, K.C., Leung, T.Y., Lau, T.K., Charoenkwan, P., Chow, K.C., Lo, W.Y., Wanapirak, C., Sanguansermsri, T., et al., 2008. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc. Natl. Acad. Sci. U S A. 105, 19920-19925.
    Peng, D., Ganye, Z., Gege, S., Yanjie, X., Ning, L., Xiangdong, K., 2021. Clinical application of non-invasive prenatal diagnosis of phenylketonuria based on haplotypes via paired-end molecular tags and weighting algorithm. BMC. Med. 14, 294-304.
    Pos, O., Budis, J., Szemes, T., 2019. Recent trends in prenatal genetic screening and testing. F1000Research. 8, 764.
    Rabinowitz, T., Shomron, N., 2020. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput. Struct. Biotechnol. J. 18, 2463-2470.
    Shi, J., Zhang, R., Li, J., Zhang, R., 2019. Novel perspectives in fetal biomarker implementation for the noninvasive prenatal testing. Crit. Rev. Clin. Lab. Sci. 56, 374-392.
    Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192.
    Viprakasit, V., Ekwattanakit, S., 2018. Clinical classification, screening and diagnosis for thalassemia. Hematol. Oncol. Clin. N. 32, 193-211.
    Wagenmakers, E.J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q.F., Dropmann, D., Boutin, B., et al., 2018. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon. Bull. Rev. 25, 58-76.
    Xu, C., Li, J., Chen, S., Cai, X., Jing, R., Qin, X., Pan, D., Zhao, X., Ma, D., Xu, X., et al., 2022. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening. Cell. Discov. 8, 109-131.
    Yang, J., Peng, C.F., Qi, Y., Rao, X.Q., Guo, F., Hou, Y., He, W., Wu, J., Chen, Y.Y., Zhao, X., et al., 2020. Noninvasive prenatal detection of hemoglobin Bart hydrops fetalis via maternal plasma dispensed with parental haplotyping using the semiconductor sequencing platform. Am. J. Obstet. Gynecol. 222, 185.e181-185.e117.
    Zhang, J., Wu, Y., Chen, S., Luo, Q., Xi, H., Li, J., Qin, X., Peng, Y., Ma, N., Yang, B., et al., 2024. Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies. Nat. Med. 30, 470-479.
    Zhao, G., Wang, X., Liu, L., Dai, P., Kong, X., 2021. Noninvasive prenatal diagnosis of duchenne muscular dystrophy in five Chinese families based on relative mutation dosage approach. BMC. Med. Genomics. 14, 275-284.
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 录用日期:  2025-09-19
  • 修回日期:  2025-09-17
  • 网络出版日期:  2025-09-26

目录

    /

    返回文章
    返回