9.9
CiteScore
7.1
Impact Factor
Volume 34 Issue 11
Nov.  2007

The JNK Pathway and Neuronal Migration

doi: 10.1016/S1673-8527(07)60108-8
More Information
  • Corresponding author: E-mail address: zhxu@genetics.ac.cn (Zhiheng Xu)
  • Received Date: 2007-09-21
  • Accepted Date: 2007-09-27
  • Available Online: 2007-11-22
  • Publish Date: 2007-11-20
  • The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediators of neuronal cell death in response to stress and injury. However, recent studies have provided substantial evidence that the JNK pathway plays an important role in neuronal migration. Here, we will give a brief introduction of the JNK signaling pathway and put more emphasis on its role in neuronal migration.
  • [1]
    Davis, RJ Signal transduction by the JNK group of MAP kinases Cell, 103 (2000),pp. 239-252
    [2]
    Weston, CR, Davis, et al. The JNK signal transduction pathway Curr Opin Genet Dev, 12 (2002),pp. 14-21
    [3]
    Xu, Z, Greene, et al. Activation of the apoptotic JNK pathway through the Rac1-binding scaffold protein POSH Methods Enzymol, 406 (2006),pp. 479-489
    [4]
    Minden, A, Karin, et al. Regulation and function of the JNK subgroup of MAP kinases Biochim Biophys Acta, 1333 (1997),pp. F85-F104
    [5]
    Xu, Z, Maroney, et al. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis Mol Cell Biol, 21 (2001),pp. 4713-4724
    [6]
    Barr, RK, Bogoyevitch, et al. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs) Int J Biochem Cell Biol, 33 (2001),pp. 1047-1063
    [7]
    Johnson, GL, Lapadat, et al. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases Science, 298 (2002),pp. 1911-1912
    [8]
    Kyriakis, JM, Banerjee, et al. The stress-activated protein kinase subfamily of c-Jun kinase Nature, 369 (1994),pp. 156-160
    [9]
    Ichijo, H From receptors to stress-activated MAP kinase Oncogene, 18 (1999),pp. 6087-6093
    [10]
    Xu, Z, Kukekov, et al. POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis EMBO J, 22 (2003),pp. 252-261
    [11]
    Zhang, QG, Wang, et al. Knock-down of POSH expression is neuroprotective through down-regulating activation of the MLK3-MKK4-JNK pathway following cerebral ischaemia in the rat hippocampal CA1 subfield J Neurochem, 95 (2005),pp. 784-795
    [12]
    Xu, Z, Kukekov, et al. Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feed-forward loop Mol Cell Biol, 25 (2005),pp. 9949-9959
    [13]
    Kukekov, NV, Xu, et al. Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs J Biol Chem, 281 (2006),pp. 15517-15524
    [14]
    Gupta, S, Barrett, et al. Selective interaction of JNK protein kinase isoforms with transcription factors EMBO J, 15 (1996),pp. 2760-2770
    [15]
    Bogoyevitch, MA The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting BioEssays, 28 (2006),pp. 923-934
    [16]
    Kuan, CY, Yang, et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development Neuron, 22 (1999),pp. 667-676
    [17]
    Tournier, C, Hess, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway Science, 288 (2000),pp. 870-874
    [18]
    Gupta, S, Campbell, et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway Science, 267 (1995),pp. 389-393
    [19]
    Bogoyevitch, MA, Kobe, et al. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases Microbiol Mol Biol Rev, 70 (2006),pp. 1061-1095
    [20]
    Gupta, A, Tsai, et al. Life is a journey: a genetic look at neocortical development Nat Rev Genet, 3 (2002),pp. 342-355
    [21]
    Hatten, ME Central nervous system neuronal migration Annu Rev Neurosci, 22 (1999),pp. 511-539
    [22]
    Kriegstein, AR, Noctor, et al. Patterns of neuronal migration in the embryonic cortex Trends Neurosci, 27 (2004),pp. 392-399
    [23]
    Marin, O, Rubenstein, et al. A long, remarkable journey: tangential migration in the telencephalon Nat Rev Neurosci, 2 (2001),pp. 780-790
    [24]
    Marin, O, Rubenstein, et al. Cell migration in the forebrain Annu Rev Neurosci, 26 (2003),pp. 441-483
    [25]
    Nadarajah, B, Brunstrom, et al. Two modes of radial migration in early development of the cerebral cortex Nat Neurosci, 4 (2001),pp. 143-150
    [26]
    Schaar, BT, McConnell, et al. Cytoskeletal coordination during neuronal migration Proc Natl Acad Sci USA, 102 (2005),pp. 13652-13657
    [27]
    Saito, T, Nakatsuji, et al. Dev Biol, 240 (2001),pp. 237-246
    [28]
    Saito, T, Nakatsuji, et al. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex J Neurosci, 23 (2003),pp. 9996-10001
    [29]
    LoTurco, JJ, Bai, et al. The multipolar stage and disruptions in neuronal migration Trends Neurosci, 29 (2006),pp. 407-413
    [30]
    Lian, G, Sheen, et al. Cerebral developmental disorders Curr Opin Pediatr, 18 (2006),pp. 614-620
    [31]
    Guerrini, R, Marini, et al. Genetic malformations of cortical development Exp Brain Res, 173 (2006),pp. 322-333
    [32]
    Ayala, R, Shu, et al. Trekking across the brain: the journey of neuronal migration Cell, 12 (2007),pp. 29-43
    [33]
    Rivas, RJ, Hatten, et al. Motility and cytoskeletal organization of migrating cerebellar granule neurons J Neurosci, 15 (1995),pp. 981-989
    [34]
    Nagano, T, Morikubo, et al. Filamin A and FILIP (Filamin A-Interacting Protein) regulate cell polarity and motility in neocortical subventricular and intermediate zones during radial migration J Neurosci, 24 (2001),pp. 9648-9657
    [35]
    Fox, JW, Lamperti, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia Neuron, 21 (1999),pp. 1315-1325
    [36]
    Ma, X, Kawamoto, et al. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons Mol Biol Cell, 15 (2004),pp. 2568-2579
    [37]
    Krause, M, Dent, et al. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration Annu Rev Cell Dev Biol, 19 (2003),pp. 541-564
    [38]
    Nagano, T, Yoneda, et al. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone Nat Cell Biol, 4 (2002),pp. 495-501
    [39]
    Kawauchi, T, Chihama, et al. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration Nat Cell Biol, 8 (2006),pp. 17-26
    [40]
    Huang, C, Jacobson, et al. MAP kinases and cell migration J Cell Sci, 117 (2004),pp. 4619-4628
    [41]
    Kawauchi, T, Chihama, et al. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK Biochem Biophys Res Commun, 331 (2005),pp. 50-55
    [42]
    Reiner, O, Coquelle, et al. Missense mutations resulting in type 1 lissencephaly Cell Mol Life Sci, 62 (2005),pp. 425-434
    [43]
    Tsai, JW, Chen, et al. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages J Cell Biol, 170 (2005),pp. 935-945
    [44]
    Mesngon, MT, Tarricone, et al. Regulation of cytoplasmic dynein ATPase by Lis1 J Neurosci, 26 (2006),pp. 2132-2139
    [45]
    Shu, T, Ayala, et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning Neuron, 44 (2004),pp. 263-277
    [46]
    Li, J, Lee, et al. NudEL targets dynein to microtubule ends through LIS1 Nat Cell Biol, 7 (2005),pp. 686-690
    [47]
    Bai, J, Ramos, et al. RNAi reveals doublecortin is required for radial migration in rat neocortex Nat Neurosci, 6 (2003),pp. 1277-1283
    [48]
    Koizumi, H, Tanaka, et al. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration Neuron, 49 (2006),pp. 55-66
    [49]
    Shu, T, Tseng, et al. Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression Neuron, 49 (2006),pp. 25-39
    [50]
    Deuel, TA, Liu, et al. Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth Neuron, 49 (2006),pp. 41-53
    [51]
    Gdalyahu, A, Ghosh, et al. DCX, a new mediator of the JNK pathway EMBO J, 23 (2004),pp. 823-832
    [52]
    Tessier-Lavigne, M, Goodman, et al. The molecular biology of axon guidance Science, 274 (1996),pp. 1123-1133
    [53]
    Kruger, RP, Aurandt, et al. Semaphorins command cells to move Nat Rev Mol Cell Biol, 6 (2005),pp. 789-800
    [54]
    Hirai, S, Kawaguchi, et al. MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo Development, 129 (2002),pp. 4483-4495
    [55]
    Konno, D, Yoshimura, et al. Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons J Biol Chem, 280 (2005),pp. 5082-5088
    [56]
    Kuo, G, Arnaud, et al. Absence of Fyn and Src causes a reeler-like phenotype J Neurosci, 25 (2005),pp. 8578-8586
    [57]
    Xie, Z, Samuels, et al. Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling–a hypothesis on neuronal migration Cereb Cortex, 16 (2006),pp. 64-68
    [58]
    Xie, Z, Sanada, et al. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration Cell, 114 (2003),pp. 469-482
    [59]
    Takahashi, S, Saito, et al. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules J Biol Chem, 278 (2003),pp. 10506-10515
    [60]
    Segarra, J, Balenci, et al. Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration J Biol Chem, 281 (2006),pp. 4771-4778
    [61]
    Chen, L, Liao, et al. Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons J Neurosci, 27 (2007),pp. 3884-3893
    [62]
    Kawauchi, T, Chihama, et al. EMBO J, 22 (2003),pp. 4190-4201
    [63]
    Suenaga, J, Cuide, et al. Developmental changes in the expression pattern of the JNK activator kinase MUK/DLK/ZPK and active JNK in the mouse cerebellum Cell Tissue Res, 325 (2006),pp. 189-195
    [64]
    Hirai, S, Cuide, et al. The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex J Neurosci, 26 (2006),pp. 11992-12002
    [65]
    Sarkisian, MR, Bartley, et al. MEKK4 signaling regulates filamin expression and neuronal migration Neuron, 52 (2006),pp. 789-801
    [66]
    Chang, LF, Jones, et al. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins Dev Cell, 4 (2003),pp. 521-533
    [67]
    Huang, C, Rajfur, et al. JNK phosphorylates paxillin and regulates cell migration Nature, 424 (2003),pp. 219-223
    [68]
    Tararuk, T, Ostman, et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length J Cell Biol, 173 (2005),pp. 265-277
  • Relative Articles

    [1]Liu Yang, Xing Zhang, Yaning Hu, Piao Zhu, Hua Li, Zhenyu Peng, Hai Xiang, Xinying Zhou, Xingbo Zhao. Ancient mitochondrial genome depicts sheep maternal dispersal and migration in Eastern Asia[J]. Journal of Genetics and Genomics, 2024, 51(1): 87-95. doi: 10.1016/j.jgg.2023.06.002
    [2]Chaoqing Cheng, Jinzi Chen, Liqi Zhang, Bangzhuo Huang, Jianlong Ma, Lingfei Luo, Yun Yang. Migration and proliferation of ductal cells promote pancreatic repair after trauma[J]. Journal of Genetics and Genomics, 2024, 51(11): 1318-1321. doi: 10.1016/j.jgg.2024.08.004
    [3]Chen Qu, Yating Kan, Hui Zuo, Mengqi Wu, Zhixiang Dong, Xinyi Wang, Qing Zhang, Heng Wang, Dou Wang, Jiong Chen. Actin polymerization induces mitochondrial distribution during collective cell migration[J]. Journal of Genetics and Genomics, 2023, 50(1): 46-49. doi: 10.1016/j.jgg.2022.04.014
    [4]Jacques Togo, Yanrui Yang, Sumei Hu, Jia-Jia Liu, John R. Speakman. Effect of disrupted episodic memory on food consumption: no impact of neuronal loss of endophilin A1 on food intake and energy balance[J]. Journal of Genetics and Genomics, 2022, 49(4): 329-337. doi: 10.1016/j.jgg.2022.01.005
    [5]Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001
    [6]Elisabetta Morini, Dadi Gao, Emily M. Logan, Monica Salani, Aram J. Krauson, Anil Chekuri, Yei-Tsung Chen, Ashok Ragavendran, Probir Chakravarty, Serkan Erdin, Alexei Stortchevoi, Jesper Q. Svejstrup, Michael E. Talkowski, Susan A. Slaugenhaupt. Developmental regulation of neuronal gene expression by Elongator complex protein 1 dosage[J]. Journal of Genetics and Genomics, 2022, 49(7): 654-665. doi: 10.1016/j.jgg.2021.11.011
    [7]Guodong Chen, Lin Han, Senwei Tan, Xiangbin Jia, Huidan Wu, Yingting Quan, Qiumeng Zhang, Bin Yu, Zhengmao Hu, Kun Xia, Hui Guo. Loss-of-function of KMT5B leads to neurodevelopmental disorder and impairs neuronal development and neurogenesis[J]. Journal of Genetics and Genomics, 2022, 49(9): 881-890. doi: 10.1016/j.jgg.2022.03.004
    [8]Jianzhi Zhao, Xiaojie Wang, Xinan Meng, Wei Zou, Suhong Xu. Rapid and efficient wounding for in vivo studies of neuronal dendrite regeneration and degeneration[J]. Journal of Genetics and Genomics, 2021, 48(2): 163-166. doi: 10.1016/j.jgg.2020.10.003
    [9]Binbin Wu, Lei He, Yutong Xiao, Juan Du, Xiaoxiao Wang, Zhangwu Zhao. Juvenile hormone receptor Met regulates sleep and neuronal morphology via glial-neuronal crosstalk[J]. Journal of Genetics and Genomics, 2021, 48(8): 706-715. doi: 10.1016/j.jgg.2021.04.010
    [10]Weiwei Ma, Mengnan Wu, Siyan Zhou, Ye Tao, Zuolei Xie, Yi Zhong. Reduced Smoothened level rescues Aβ-induced memory deficits and neuronal inflammation in animal models of Alzheimer's disease[J]. Journal of Genetics and Genomics, 2018, 45(5): 237-246. doi: 10.1016/j.jgg.2018.05.001
    [11]Yi-Chun Huang, Henry Moreno, Sarayu Row, Dongyu Jia, Wu-Min Deng. Germline silencing of UASt depends on the piRNA pathway[J]. Journal of Genetics and Genomics, 2018, 45(5): 273-276. doi: 10.1016/j.jgg.2018.04.005
    [12]Jie Ye, Danping Chen, Yue Yu, Liming Wang. Neuronal insulin receptor mediates a positive feedback regulation of insulin biosynthesis in Drosophila[J]. Journal of Genetics and Genomics, 2017, 44(2): 123-125. doi: 10.1016/j.jgg.2016.12.006
    [13]Longhao Sun, Corrine Ying Xuan Chua, Weijun Tian, Zhixiang Zhang, Paul J. Chiao, Wei Zhang. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma[J]. Journal of Genetics and Genomics, 2015, 42(10): 563-577. doi: 10.1016/j.jgg.2015.07.003
    [14]Yun-Mi Jeong, Tae-Eun Jin, Jung-Hwa Choi, Mi-Sun Lee, Hyun-Taek Kim, Kyu-Seok Hwang, Doo-Sang Park, Hyun-Woo Oh, Joong-Kook Choi, Vladimir Korzh, Melitta Schachner, Kwan-Hee You, Cheol-Hee Kim. Induction of clusterin Expression by Neuronal Cell Death in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(11): 583-589. doi: 10.1016/j.jgg.2014.08.007
    [15]Yunwei Ou, Lingyan Liu, Liyan Xue, Wei Zhou, Zitong Zhao, Bainan Xu, Yongmei Song, Qimin Zhan. TRAP1 Shows Clinical Significance and Promotes Cellular Migration and Invasion through STAT3/MMP2 Pathway in Human Esophageal Squamous Cell Cancer[J]. Journal of Genetics and Genomics, 2014, 41(10): 529-537. doi: 10.1016/j.jgg.2014.08.004
    [16]Zhen Pan, Yang Zhao, Yuan Zheng, Juntao Liu, Xiangning Jiang, Yan Guo. A High-Throughput Method for Screening Arabidopsis Mutants with Disordered Abiotic Stress-Induced Calcium Signal[J]. Journal of Genetics and Genomics, 2012, 39(5): 225-235. doi: 10.1016/j.jgg.2012.04.002
    [17]Ming Zhang, Yongqing Zhang, Zhiheng Xu. POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila[J]. Journal of Genetics and Genomics, 2010, 37(9): 605-619. doi: 10.1016/S1673-8527(09)60080-1
    [18]Tracy L Bergemann. Use of signal quality measurements to gain efficiency in the analysis of cDNA microarray data[J]. Journal of Genetics and Genomics, 2010, 37(4): 265-279. doi: 10.1016/S1673-8527(09)60045-X
    [19]Aidong Zhou, Jianlin Zhou, Liping Yang, Mingjun Liu, Hong Li, Su Xu, Mei Han, Jian Zhang. A nuclear localized protein ZCCHC9 is expressed in cerebral cortex and suppresses the MAPK signal pathway[J]. Journal of Genetics and Genomics, 2008, 35(8): 467-472. doi: 10.1016/S1673-8527(08)60064-8
    [20]Gang Ma, Yue Xiao, Lin He. Recent progress in the study of Hedgehog signaling[J]. Journal of Genetics and Genomics, 2008, 35(3): 129-137. doi: 10.1016/S1673-8527(08)60019-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return