9.9
CiteScore
7.1
Impact Factor
Volume 37 Issue 2
Feb.  2010

ELE restrains empty glumes from developing into lemmas

doi: 10.1016/S1673-8527(09)60029-1
More Information
  • Corresponding author: E-mail address: zkcheng@genetics.ac.cn (Zhukuan Cheng)
  • Received Date: 2009-12-27
  • Accepted Date: 2010-01-18
  • Rev Recd Date: 2010-01-18
  • Available Online: 2010-03-18
  • Publish Date: 2010-02-20
  • Although there is evident homology among reproductive organs when comparing Poaceae (grass) and eudicots, the identity of grass specific organs, such as lodicules, palea, lemma, and glumes has been the subject of a vast and largely inconclusive discussion. Here we provide some direct evidence to support the idea that the empty glumes of rice (Oryza sativa) are counterparts of lemmas. We show that the development of empty glumes is regulated by (), which belongs to a plant specific novel gene family. Mutations at the ELE locus cause elongated empty glumes, which mimic the lemmas and have the epidermal morphology of lemmas with four or five vascular bundles. As a nuclear-localized gene, ELE is specifically expressed at the empty glumes of immature spikelets, and its ectopic expression causes many floral development defects, including lemma-like palea, extra palea-like structures, elongated lodicules, extra stamens and stigmas. Our result suggests that empty glumes are lemmas of the sterile florets located at the lateral side of the rice spikelet, and ELE acts as a regulator restraining its growth to maintain its small size in wild-type plants.
  • These authors contributed equally to this work
  • [1]
    Agrawal, G.K., Abe, K., Yamazaki, M. et al. Plant Mol. Biol., 59 (2005),pp. 125-135
    [2]
    Ambrose, B.A., Lerner, D.R., Ciceri, P. et al. Mol. Cell, 5 (2000),pp. 569-579
    [3]
    Bell, A.D.
    [4]
    Bommert, P., Satoh-Nagasawa, N., Jackson, D. et al. Genetics and evolution of inflorescence and flower development in grasses Plant Cell Physiol., 46 (2005),pp. 69-78
    [5]
    Bowman, J.L., Smyth, D.R., Meyerowitz, E.M. Plant Cell, 1 (1989),pp. 37-52
    [6]
    Bowman, J.L., Smyth, D.R., Meyerowitz, E.M. Development, 112 (1991),pp. 1-20
    [7]
    Chen, Z.X., Wu, J.G., Ding, W.N. et al. Planta, 223 (2006),pp. 882-890
    [8]
    Chu, H., Qian, Q., Liang, W. et al. Plant Physiol., 142 (2006),pp. 1039-1052
    [9]
    Chung, Y.Y., Kim, S.R., Kang, H.G. et al. Plant Sci., 109 (1995),pp. 45-56
    [10]
    Chung, Y.Y., Kim, S.R., Finkel, D. et al. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene Plant Mol. Biol., 26 (1994),pp. 657-665
    [11]
    Clifford, H.T.
    [12]
    Coen, E.S., Meyerowitz, E.M. The war of the whorls: genetic interactions controlling flower development Nature, 353 (1991),pp. 31-37
    [13]
    Colombo, L., Franken, J., Koetje, E. et al. Plant Cell, 7 (1995),pp. 1859-1868
    [14]
    Colombo, L., Marziani, G., Masiero, S. et al. Plant J., 16 (1998),pp. 355-363
    [15]
    Dreni, L., Jacchia, S., Fornara, F. et al. Plant J., 52 (2007),pp. 690-699
    [16]
    Ferrario, S., Immink, R.G., Angenent, G.C. Conservation and diversity in flower land Curr. Opin. Plant Biol., 7 (2004),pp. 84-91
    [17]
    Horigome, A., Nagasawa, N., Ikeda, K. et al. Plant J., 58 (2009),pp. 724-736
    [18]
    Ikeda, K., Ito, M., Nagasawa, N. et al. Plant J., 51 (2007),pp. 1030-1040
    [19]
    Irish, V.F. Variations on a theme: flower development and evolution Genome Biol., 1 (2000)
    [20]
    Jeon, J.S., Lee, S., An, G. Mol. Cells, 26 (2008),pp. 474-480
    [21]
    Jeon, J.S., Jang, S., Lee, S. et al. Plant Cell, 12 (2000),pp. 871-884
    [22]
    Kang, H.G., Jeon, J.S., Lee, S. et al. Identification of class B and class C floral organ identity genes from rice plants Plant Mol. Biol., 38 (1998),pp. 1021-1029
    [23]
    Kang, H.G., Noh, Y.S., Chung, Y.Y. et al. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco Plant Mol. Biol., 29 (1995),pp. 1-10
    [24]
    Kellogg, E.A. Evolutionary history of the grasses Plant Physiol., 125 (2001),pp. 1198-1205
    [25]
    Komatsu, M., Chujo, A., Nagato, Y. et al. Development, 130 (2003),pp. 3841-3850
    [26]
    Kyozuka, J., Shimamoto, K. Plant Cell Physiol., 43 (2002),pp. 130-135
    [27]
    Lee, D.Y., Lee, J., Moon, S. et al. Plant J., 49 (2007),pp. 64-78
    [28]
    Lee, S., Jeon, J.S., Jung, K.-H. et al. Binary vectors for efficient transformation of rice J. Plant Biol., 42 (1999),pp. 310-316
    [29]
    Lee, S., Jeon, J.S., An, K. et al. Planta, 217 (2003),pp. 904-911
    [30]
    Li, A., Zhang, Y., Wu, X. et al. Plant Mol. Biol., 66 (2008),pp. 491-502
    [31]
    Li, G.S., Meng, Z., Kong, H.Z. et al. Dev. Genes Evol., 215 (2005),pp. 437-449
    [32]
    Li, H., Xue, D., Gao, Z. et al. Plant J., 57 (2009),pp. 593-605
    [33]
    Lim, J., Moon, Y.H., An, G. et al. Two rice MADS domain proteins interact with OsMADS1 Plant Mol. Biol., 44 (2000),pp. 513-527
    [34]
    Lopez-Dee, Z.P., Wittich, P., Enrico Pe, M. et al. Dev. Genet., 25 (1999),pp. 237-244
    [35]
    Malcomber, S.T., Kellogg, E.A. Plant Cell, 16 (2004),pp. 1692-1706
    [36]
    Moon, Y.H., Jung, J.Y., Kang, H.G. et al. Plant Mol. Biol., 40 (1999),pp. 167-177
    [37]
    Nagasawa, N., Miyoshi, M., Sano, Y. et al. Development, 130 (2003),pp. 705-718
    [38]
    Ohmori, S., Kimizu, M., Sugita, M. et al. Plant Cell, 21 (2009),pp. 3008-3025
    [39]
    Pelaz, S., Ditta, G.S., Baumann, E. et al. Nature, 405 (2000),pp. 200-203
    [40]
    Prasad, K., Vijayraghavan, U. Genetics, 165 (2003),pp. 2301-2305
    [41]
    Prasad, K., Parameswaran, S., Vijayraghavan, U. Plant J., 43 (2005),pp. 915-928
    [42]
    Prasad, K., Sriram, P., Kumar, C.S. et al. Dev. Genes Evol., 211 (2001),pp. 281-290
    [43]
    Rudall, P.J., Stuppy, W., Jennifer, C. et al. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae Am. J. Bot., 92 (2005),pp. 1432-1443
    [44]
    Schmidt, R.J., Ambrose, B.A. The blooming of grass flower development Curr. Opin. Plant Biol., 1 (1998),pp. 60-67
    [45]
    Suzaki, T., Sato, M., Ashikari, M. et al. Development, 131 (2004),pp. 5649-5657
    [46]
    Whipple, C.J., Zanis, M.J., Kellogg, E.A. et al. Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 1081-1086
    [47]
    Yamaguchi, T., Nagasawa, N., Kawasaki, S. et al. Plant Cell, 16 (2004),pp. 500-509
    [48]
    Yamaguchi, T., Lee, D.Y., Miyao, A. et al. Plant Cell, 18 (2006),pp. 15-28
    [49]
    Yao, S.G., Ohmori, S., Kimizu, M. et al. Plant Cell Physiol., 49 (2008),pp. 853-857
    [50]
    Yuan, Z., Gao, S., Xue, D.W. et al. Plant Physiol., 149 (2009),pp. 235-244
    [51]
    Zhao, L., Nakazawa, M., Takase, T. et al. Plant J., 37 (2004),pp. 694-706
    [52]
    Zhou, Y., Li, S., Qian, Q. et al. Plant J., 57 (2009),pp. 446-462
    [53]
    Zhu, Q.H., Hoque, M.S., Dennis, E.S. et al. BMC Plant Biol., 3 (2003),pp. 6-18
  • Relative Articles

    [1]Xiyu Tan, Wanyong Zeng, Yujian Yang, Zhansheng Lin, Fuquan Li, Jianhong Liu, Shaotong Chen, Yao-Guang Liu, Weibo Xie, Xianrong Xie. Genome-wide profiling of polymorphic short tandem repeats and their influence on gene expression and trait variation in diverse rice populations[J]. Journal of Genetics and Genomics, 2025, 52(6): 733-746. doi: 10.1016/j.jgg.2025.03.005
    [2]Fengjun Xian, Shuya Liu, Bin Xie, Jishuai Huang, Qiannan Zhang, Yimeng Xu, Xinrong Zhang, Chen Lv, Lin Zhu, Jun Hu. The auxin response factor OsARF12 modulates rice leaf angle via affecting shoot gravitropism[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2025.06.005
    [3]Mengjiao Chen, Yifeng Hong, Jiongjiong Fan, Dengyi Cao, Chong Yin, Anjie Yu, Jie Qiu, Xuehui Huang, Xin Wei. Genetic interaction network of quantitative trait genes for heading date in rice[J]. Journal of Genetics and Genomics, 2025, 52(6): 747-760. doi: 10.1016/j.jgg.2024.12.019
    [4]Haolin Liu, Jinlong Ni, Yuhan Zhang, Yue Chen, Yanmin Luo, Yi Wang, Fei Shang, Yuke Yang, Rongfang Xu, Liyong Cao, Lilan Hong, Juan Xu, Yuanzhu Yang, Ming Zhou. GLGW10 controls grain size associated with the lignin content in rice[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2025.02.009
    [5]Ning Zhang, Yuhao Liu, Songtao Gui, Yonghong Wang. Regulation of tillering and panicle branching in rice and wheat[J]. Journal of Genetics and Genomics, 2025, 52(7): 869-886. doi: 10.1016/j.jgg.2024.12.005
    [6]De-Qiang Li, Xiao-Ling Liu, Meng Yuan, Wenxian Sun, Jian-Min Zhou, Wen-Ming Wang, Jing Fan. Understanding and enhancing rice resistance to false smut disease[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2025.03.014
    [7]Bin Ma, Xiubiao Cao, Xiaoyuan Li, Zhong Bian, Qi-Qi Zhang, Zijun Fang, Jiyun Liu, Qun Li, Qiaoquan Liu, Lin Zhang, Zuhua He. Two ABCI family transporters, OsABCI15 and OsABCI16, are involved in grain-filling in rice[J]. Journal of Genetics and Genomics, 2024, 51(5): 492-506. doi: 10.1016/j.jgg.2023.10.007
    [8]Xingxing Li, Meng-en Wu, Juncheng Zhang, Jingyue Xu, Yuanfei Diao, Yibo Li. The OsCLV2s-OsCRN1 co-receptor regulates grain shape in rice[J]. Journal of Genetics and Genomics, 2024, 51(7): 691-702. doi: 10.1016/j.jgg.2024.03.011
    [9]Yidan Ouyang, Xu Li, Qifa Zhang. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 385-393. doi: 10.1016/j.jgg.2022.02.022
    [10]Kangli Sun, Minghui Huang, Wubei Zong, Dongdong Xiao, Chen Lei, Yanqiu Luo, Yingang Song, Shengting Li, Yu Hao, Wanni Luo, Bingqun Xu, Xiaotong Guo, Guangliang Wei, Letian Chen, Yao-Guang Liu, Jingxin Guo. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits[J]. Journal of Genetics and Genomics, 2022, 49(5): 437-447. doi: 10.1016/j.jgg.2022.02.018
    [11]Penglin Zhan, Shuaipeng Ma, Zhili Xiao, Fangping Li, Xin Wei, Shaojun Lin, Xiaoling Wang, Zhe Ji, Yu Fu, Jiahao Pan, Mi Zhou, Yue Liu, Zengyuan Chang, Lu Li, Suhong Bu, Zupei Liu, Haitao Zhu, Guifu Liu, Guiquan Zhang, Shaokui Wang. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008
    [12]Libin Chen, Chonghui Ji, Degui Zhou, Xin Gou, Jianian Tang, Yongjie Jiang, Jingluan Han, Yao-Guang Liu, Letian Chen, Yongyao Xie. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 481-491. doi: 10.1016/j.jgg.2022.03.003
    [13]Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002
    [14]Hanwen Li, Jinqiang Nian, Shuang Fang, Meng Guo, Xiahe Huang, Fengxia Zhang, Qing Wang, Jian Zhang, Jiaoteng Bai, Guojun Dong, Peiyong Xin, Xianzhi Xie, Fan Chen, Guodong Wang, Yingchun Wang, Qian Qian, Jianru Zuo, Jinfang Chu, Xiaohui Ma. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 469-480. doi: 10.1016/j.jgg.2022.02.006
    [15]Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025
    [16]Xinkai Zhou, Tao Zhu, Wen Fang, Ranran Yu, Zhaohui He, Dijun Chen. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. Journal of Genetics and Genomics, 2022, 49(12): 1127-1137. doi: 10.1016/j.jgg.2022.04.003
    [17]Guangyu Liu, Wanxia Jiang, Lei Tian, Yongcai Fu, Lubin Tan, Zuofeng Zhu, Chuanqing Sun, Fengxia Liu. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 458-468. doi: 10.1016/j.jgg.2022.01.007
    [18]Xiaodong Xin, Xingwang Li, Junkai Zhu, Xiaobin Liu, Zhenghu Chu, Jiali Shen, Changyin Wu. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice[J]. Journal of Genetics and Genomics, 2021, 48(6): 485-496. doi: 10.1016/j.jgg.2021.04.011
    [19]Zhiyao Lv, Rui Dai, Haoran Xu, Yongxin Liu, Bo Bai, Ying Meng, Haiyan Li, Xiaofeng Cao, Yang Bai, Xianwei Song, Jingying Zhang. The rice histone methylation regulates hub species of the root microbiota[J]. Journal of Genetics and Genomics, 2021, 48(9): 836-843. doi: 10.1016/j.jgg.2021.06.005
    [20]Aili Qu, Yan Xu, Xinxing Yu, Qi Si, Xuwen Xu, Changhao Liu, Liuyi Yang, Yueping Zheng, Mengmeng Zhang, Shuqun Zhang, Juan Xu. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705. doi: 10.1016/j.jgg.2021.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return