[1] |
Augustin, M., Sedlmeier, R., Peters, T. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis Mamm. Genome, 16 (2004),pp. 405-413
|
[2] |
Austin, C.P., Battey, J.F., Bradley, A. et al. The knockout mouse project Nat. Genet., 36 (2004),pp. 921-924
|
[3] |
Auwerx, J., Avner, P., Baldock, R. et al. The European dimension for the mouse genome mutagenesis program Nat. Genet., 36 (2004),pp. 925-927
|
[4] |
Butler, D., Smaglik, P. Draft data leave geneticists with a mountain still to climb Nature, 405 (2000),pp. 984-985
|
[5] |
Campbell, P.J., Stephens, P.J., Pleasance, E.D. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing Nat. Genet., 40 (2008),pp. 722-729
|
[6] |
Clapcote, S.J., Lipina, T.V., Millar, J.K. et al. Neuron, 54 (2007),pp. 387-402
|
[7] |
Complex Trait Consortium The Collaborative Cross, a community resource for the genetic analysis of complex traits Nat. Genet., 36 (2004),pp. 1133-1137
|
[8] |
Doetschman, T., Maeda, N., Smithies, O. Proc. Natl. Acad. Sci. USA, 85 (1988),pp. 8583-8587
|
[9] |
ENCODE Project Consortium The ENCODE (ENCyclopedia of DNA Elements) Project Science, 306 (2004),pp. 636-640
|
[10] |
Gondo, Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics Nat. Rev. Genet., 9 (2008),pp. 803-810
|
[11] |
Gondo, Y.
|
[12] |
Gondo, Y., Fukumura, R., Murata, T. et al. Next-generation gene targeting in the mouse for functional genomics BMB Rep., 42 (2009),pp. 315-323
|
[13] |
Hitotsumachi, S., Carpenter, D.A., Russell, W.L. Proc. Natl. Acad. Sci. USA, 82 (1985),pp. 6619-6621
|
[14] |
Hrabé de Angelis, M.H., Flaswinkel, H., Fuchs, H. et al. Genome-wide, large scale production of mutant mice by ENU mutagenesis Nat. Genet., 25 (2000),pp. 444-447
|
[15] |
International Cancer Genome Consortium International network of cancer genome projects Nature, 464 (2010),pp. 993-998
|
[16] |
International HapMap Consortium The International HapMap Project Nature, 426 (2003),pp. 789-796
|
[17] |
International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
|
[18] |
International Mouse Knockout Consortium A mouse for all reasons Cell, 128 (2007),pp. 9-13
|
[19] |
Justice, M.J., Noveroske, J.K., Weber, J.S. et al. Mouse ENU mutagenesis Hum. Mol. Genet., 8 (1999),pp. 1955-1963
|
[20] |
Kawai, J., Shinagawa, A., Shibata, K. et al. Functional annotation of a full-length mouse cDNA collection Nature, 409 (2001),pp. 685-690
|
[21] |
King, D.P., Zhao, Y., Sangoram, A.M. et al. Cell, 89 (1997),pp. 641-653
|
[22] |
Labrie, V., Fukumura, R., Rastogi, A. et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model Hum. Mol. Genet., 18 (2009),pp. 3227-3243
|
[23] |
Macilwain, C. World leaders heap praise on human genome landmark Nature, 405 (2000),pp. 983-984
|
[24] |
Michaud, E.J., Culiat, C.T., Klebig, M.L. et al. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice BMC Genomics, 6 (2005),p. 164
|
[25] |
Millar, J.K., Wilson-Annan, J.C., Anderson, S. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia Hum. Mol. Genet., 9 (2000),pp. 1415-1423
|
[26] |
Moser, A.R., Pitot, H.C., Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse Science, 247 (1990),pp. 322-324
|
[27] |
Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome Nature, 420 (2002),pp. 520-562
|
[28] |
Nadeau, J.H., Singer, J.B., Matin, A. et al. Analysing complex genetic traits with chromosome substitution strains Nat. Genet., 24 (2000),pp. 221-225
|
[29] |
Nadeau, J.H., Balling, R., Barsh, G. et al. Sequence interpretation. Functional annotation of mouse genome sequences Science, 291 (2001),pp. 1251-1255
|
[30] |
Nolan, P.M., Peters, J., Strivens, M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse Nat. Genet., 25 (2000),pp. 440-443
|
[31] |
Noveroske, J.K., Weber, J.S., Justice, M.J. Mamm. Genome, 11 (2000),pp. 478-483
|
[32] |
Okazaki, Y., Furuno, M., Kasukawa, T. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
|
[33] |
Ota, T., Suzuki, Y., Nishikawa, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs Nat. Genet., 36 (2004),pp. 40-45
|
[34] |
Quwailid, M.M., Hugill, A., Dear, N. et al. A gene-driven ENU-based approach to generating an allelic series in any gene Mamm. Genome, 15 (2004),pp. 585-591
|
[35] |
Russell, W.L., Kelly, E.M., Hunsicker, P.R. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 5818-5819
|
[36] |
Russell, W.L., Hunsicker, P.R., Raymer, G.D. et al. Dose-response curve for ethyl-nitrosourea-induced specific-locus mutations in mouse spermatogonia Proc Natl. Acad. Sci. USA, 79 (1982),pp. 3589-3591
|
[37] |
Russell, W.L., Hunsicker, P.R., Carpenter, D.A. et al. Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 3592-3593
|
[38] |
Sakuraba, Y., Sezutsu, H., Takahasi, K.R. et al. Molecular characterization of ENU mouse mutagenesis and archives Biochem. Biophys. Res. Commun., 336 (2005),pp. 609-616
|
[39] |
Service, R.F. Gene sequencing. The race for the $1000 genome Science, 311 (2006),pp. 1544-1546
|
[40] |
Su, L.-K., Kinzler, K.W., Vogelstein, B. et al. Science, 256 (1992),pp. 668-670
|
[41] |
Thomas, K.R., Folger, K.R., Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome Cell, 44 (1986),pp. 419-428
|
[42] |
Toyoda, T., Wada, A. Omic space: coordinate-based integration and analysis of genomic phenomic interactions Bioinformatics, 20 (2004),pp. 1759-1765
|
[43] |
Venter, J.C., Adams, M.D., Myers, E.W. et al. The sequence of the human genome Science, 291 (2001),pp. 1304-1351
|
[44] |
Via, M., Gignoux, C., Burchard, E.G. The 1000 Genomes Project: new opportunities for research and social challenges Genome Med., 2 (2010),p. 3
|
[45] |
Vitaterna, M.H., King, D.P., Chang, A.M. et al. Science, 264 (1994),pp. 719-725
|
[46] |
Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
|
[1] | Yifeng Huang, Kaixuan Cui, Zhen Zhang, Rongyao Chai, Hongguang Xie, Jianyao Shou, Junru Fu, Guolin Li, Jiyun Liu, Shuangqing Wu, Guochang Sun, Jianfu Zhang, Yiwen Deng, Zuhua He. Identification and fine-mapping of quantitative trait loci (QTL) conferring rice false smut resistance in rice[J]. Journal of Genetics and Genomics, 2023, 50(4): 276-279. doi: 10.1016/j.jgg.2022.11.010 |
[2] | Xiaoxue Li, Tingdong Hu, Jiying Liu, Bin Fang, Xue Geng, Qiang Xiong, Lining Zhang, Yong Jin, Xiaorui Liu, Lin Li, Ying Wang, Rongfeng Li, Xiaochun Bai, Haiyuan Yang, Yifan Dai. Erratum to “A Bama miniature pig model of monoallelic TSC1 mutation for human tuberous sclerosis complex” [Journal of Genetics and Genomics (2020) 47, 735—742][J]. Journal of Genetics and Genomics, 2022, 49(3): 267-267. doi: 10.1016/j.jgg.2022.02.016 |
[3] | Jinlong Wang, Xiahe Huang, Haitao Ge, Yan Wang, Weiyang Chen, Limin Zheng, Chengcheng Huang, Haomeng Yang, Lingyu Li, Na Sui, Yu Wang, Yuanya Zhang, Dandan Lu, Longfa Fang, Wu Xu, Yuqiang Jiang, Fang Huang, Yingchun Wang. The quantitative proteome atlas of a model cyanobacterium[J]. Journal of Genetics and Genomics, 2022, 49(2): 96-108. doi: 10.1016/j.jgg.2021.09.007 |
[4] | Mingjie Lyu, Huafeng Liu, Joram Kiriga Waititu, Ying Sun, Huan Wang, Junjie Fu, Yanhui Chen, Jun Liu, Lixia Ku, Xiliu Cheng. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize[J]. Journal of Genetics and Genomics, 2021, 48(11): 961-971. doi: 10.1016/j.jgg.2021.07.010 |
[5] | Wen Yao, Guangwei Li, Yanru Cui, Yiming Yu, Qifa Zhang, Shizhong Xu. Mapping quantitative trait loci using binned genotypes[J]. Journal of Genetics and Genomics, 2019, 46(7): 343-352. doi: 10.1016/j.jgg.2019.06.005 |
[6] | Qingwen Jiang, Weimin Zhang, Chenghao Liu, Yicong Lin, Qingyu Wu, Junbiao Dai. Dissecting PCNA function with a systematically designed mutant library in yeast[J]. Journal of Genetics and Genomics, 2019, 46(6): 301-313. doi: 10.1016/j.jgg.2019.03.014 |
[7] | Huizhong Fan, Yibo Hu, Qi Wu, Yonggang Nie, Li Yan, Fuwen Wei. Conservation genetics and genomics of threatened vertebrates in China[J]. Journal of Genetics and Genomics, 2018, 45(11): 593-601. doi: 10.1016/j.jgg.2018.09.005 |
[8] | Bei Yang, Xiaosa Li, Liqun Lei, Jia Chen. APOBEC: From mutator to editor[J]. Journal of Genetics and Genomics, 2017, 44(9): 423-437. doi: 10.1016/j.jgg.2017.04.009 |
[9] | Zhiguo Wu, Yan Yang, Gai Huang, Jing Lin, Yuying Xia, Yuxian Zhu. Cotton functional genomics reveals global insight into genome evolution and fiber development[J]. Journal of Genetics and Genomics, 2017, 44(11): 511-518. doi: 10.1016/j.jgg.2017.09.009 |
[10] | Yongbiao Xue. Journal of Genetics and Genomics in Transition[J]. Journal of Genetics and Genomics, 2016, 43(1): 1-2. doi: 10.1016/j.jgg.2016.01.006 |
[11] | Jiyong Liu, Changqing Li, Zhongsheng Yu, Peng Huang, Honggang Wu, Chuanxian Wei, Nannan Zhu, Yan Shen, Yixu Chen, Bo Zhang, Wu-Min Deng, Renjie Jiao. Efficient and Specific Modifications of the Drosophila Genome by Means of an Easy TALEN Strategy[J]. Journal of Genetics and Genomics, 2012, 39(5): 209-215. doi: 10.1016/j.jgg.2012.04.003 |
[12] | Sushuang Zheng, Kindiya Geghman, Sushila Shenoy, Chenjian Li. Retake the Center Stage – New Development of Rat Genetics[J]. Journal of Genetics and Genomics, 2012, 39(6): 261-268. doi: 10.1016/j.jgg.2012.05.003 |
[13] | Peng Huang, Zuoyan Zhu, Shuo Lin, Bo Zhang. Reverse Genetic Approaches in Zebrafish[J]. Journal of Genetics and Genomics, 2012, 39(9): 421-433. doi: 10.1016/j.jgg.2012.07.004 |
[14] | Li Zhang, Jin Wang, Ronghua Zhou, Jizeng Jia. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype[J]. Journal of Genetics and Genomics, 2011, 38(8): 373-378. doi: 10.1016/j.jgg.2011.07.002 |
[15] | Guo Hu, Shouzhi Wang, Jianwei Tian, Lili Chu, Hui Li. Epistatic effect between ACACA and FABP2 gene on abdominal fat traits in broilers[J]. Journal of Genetics and Genomics, 2010, 37(8): 505-512. doi: 10.1016/S1673-8527(09)60070-9 |
[16] | Fang Yang, Zihui Tang, Hongwen Deng. Bivariate association analysis for quantitative traits using generalized estimation equation[J]. Journal of Genetics and Genomics, 2009, 36(12): 733-743. doi: 10.1016/S1673-8527(08)60166-6 |
[17] | The 7th Editoral Board of Journal of Genetics and Genomics[J]. Journal of Genetics and Genomics, 2008, 35(1): i-iv. doi: 10.1016/S1673-8527(08)60009-0 |
[18] | Jinghu Zhang, Yuanzhu Xiong, Bo Zuo, Minggang Lei, Siwen Jiang, Feng'e Li, Rong Zheng, Jialian Li, Dequan Xu. Detection of Quantitative Trait Loci Associated with Several Internal Organ Traits and Teat Number Trait in a Pig Population[J]. Journal of Genetics and Genomics, 2007, 34(4): 307-314. doi: 10.1016/S1673-8527(07)60032-0 |
[19] | Longzhi Han, Yongli Qiao, Sanyuan Zhang, Yuanyuan Zhang, Guilan Cao, Jonghwan Kim, Kyuseong Lee, Heejong Koh. Identification of Quantitative Trait Loci for Cold Response of Seedling Vigor Traits in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 239-246. doi: 10.1016/S1673-8527(07)60025-3 |
[20] | Guifu Liu, Jian Yang, Haiming Xu, Jun Zhu. Influence of Epistasis and QTL × Environment Interaction on Heading Date of Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2007, 34(7): 608-615. doi: 10.1016/S1673-8527(07)60069-1 |