5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 11
Nov.  2010

Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines

doi: 10.1016/S1673-8527(09)60091-6
More Information
  • Corresponding author: E-mail address: baoliu@nenu.edu.cn (Bao Liu)
  • Received Date: 2010-09-13
  • Accepted Date: 2010-09-24
  • Rev Recd Date: 2010-09-22
  • Available Online: 2010-11-27
  • Publish Date: 2010-11-20
  • Previous studies have shown rapid and extensive genomic instability associated with early stages of allopolyploidization in wheat. However, these studies are based on either a few pre-selected genomic loci or genome-wide analysis of a single plant individual for a given cross combination, thus making the extent and generality of the changes uncertain. To further study the generality and characteristics of allopolyploidization-induced genomic instability in wheat, we investigated genetic and epigenetic changes from a genome-wide perspective (by using the AFLP and MSAP markers) in four sets of newly synthesized allotetraploid wheat lines with various genome constitutions, each containing three randomly chosen individual plants at the same generation. We document that although general chromosomal stability was characteristic of all four sets of allotetraploid wheat lines, genetic and epigenetic changes at the molecular level occurred in all these plants, with both kinds of changes classifiable into two distinct categories, i.e., stochastic and directed. The abundant type of genetic change is loss of parental bands while the prevalent cytosine methylation pattern alteration is hypermethylation at the CHG sites. Our results have extended previous studies regarding allopolyploidization-induced genomic dynamics in wheat by demonstrating the generality of both genetic and epigenetic changes associated with multiple nascent allotetraploid wheat lines, and providing novel insights into the characteristics of the two kinds of induced genomic instabilities.
  • These authors contributes equally to this work.
  • [1]
    Adams, K.L., Wendel, J.F. Polyploidy and genome evolution in plants Cur. Opin. Plant Biol., 8 (2005),pp. 135-141
    [2]
    Axelsson, T., Bowman, C.M., Sharpe, A.G. et al. Genome, 43 (2000),pp. 679-688
    [3]
    Baumel, A., Ainouche, M., Kalendar, R. et al. Mol. Biol. Evol., 19 (2002),pp. 1218-1227
    [4]
    Bento, M., Pereira, H.S., Rocheta, M. et al. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale PLoS One, 3 (2008),p. e1402
    [5]
    Boyko, A., Kovalchuk, I. Epigenetic control of plant stress response Environ. Mol. Mutagen., 49 (2008),pp. 61-72
    [6]
    Cao, X., Jacobsen, S.E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 16491-16498
    [7]
    Cao, X., Aufsatz, W., Zilberman, D. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation Curr. Biol., 13 (2003),pp. 2212-2217
    [8]
    Chagué, V.J.J., Mestiri, I., Balzergue, S. et al. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids New Phytol., 186 (2010),pp. 161-174
    [9]
    Chelaifa, H., Monnier, A., Ainouche, M. New Phytol., 186 (2010),pp. 161-174
    [10]
    Chen, Z.J., Ni, Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids BioEssays, 28 (2006),pp. 240-252
    [11]
    Comai, L. The advantages and disadvantages of being polyploid Nat. Rev. Genet., 6 (2005),pp. 836-846
    [12]
    Comai, L., Tyagi, A.P., Winter, K. et al. Plant Cell, 12 (2000),pp. 1551-1567
    [13]
    Dong, Y.Z., Liu, Z.L., Shan, X.H. et al. Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements Russ. J. Genet., 41 (2005),pp. 890-896
    [14]
    Dong, Z.Y., Wang, Y.M., Zhang, Z.J. et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb Theor. Appl. Genet., 113 (2006),pp. 196-205
    [15]
    Doyle, J.J., Flagel, L.E., Paterson, A.H. et al. Evolutionary genetics of genome merger and doubling in plants An. Rev. Genet., 42 (2008),pp. 443-461
    [16]
    Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication Science, 316 (2007),pp. 1862-1866
    [17]
    Feldman, M.
    [18]
    Feldman, M., Levy, A.A. Allopolyploidy-A shaping force in the evolution of wheat genomes Cytogenet. Genome Res., 109 (2005),pp. 250-258
    [19]
    Feldman, M., Levy, A.A. Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes J. Genet. Genomics, 36 (2009),pp. 511-518
    [20]
    Feldman, M., Lupton, F.G.H., Miller, T.E.
    [21]
    Flagel, L.E., Wendel, J.F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation New Phytol., 186 (2010),pp. 184-193
    [22]
    Gaeta, R.T., Pires, J.C., Iniguez-Luy, F. et al. Plant Cell, 19 (2007),pp. 3403-3417
    [23]
    Han, F., Liu, B., Fedak, G. et al. Theor. Appl. Genet., 109 (2004),pp. 1070-1076
    [24]
    Han, F., Fedak, G., Guo, W. et al. Rapid and repeatable elimination of a parental genome-specific repeat (pGc1R-1a) in newly synthesized wheat allopolyploids Genetics, 170 (2005),pp. 1239-1245
    [25]
    Han, F.P., Fedak, G., Ouellet, T. et al. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae Genome, 46 (2003),pp. 716-723
    [26]
    Hegarty, M.J., Barker, G.L., Brennan, A.C. et al. Philosoph. Transac. Royal Soc. B: Biol. Sci., 363 (2008),pp. 3055-3069
    [27]
    Hufton, A.L., Panopoulou, G. Polyploidy and genome restructuring: a variety of outcomes Cur. Opin. Genet. Develop., 19 (2009),pp. 600-606
    [28]
    Jackson, S., Chen, Z.J. Genomic and expression plasticity of polyploidy Cur. Opin. Plant Biol., 13 (2010),pp. 153-159
    [29]
    Levy, A.A., Feldman, M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization Biol. J. Lin. Soc., 82 (2004),pp. 607-613
    [30]
    Liu, B., Wendel, J.F. Epigenetic phenomena and the evolution of plant allopolyploids Mol. Phylogenet. Evol., 29 (2003),pp. 365-379
    [31]
    Liu, B., Brubaker, C.L., Mergeai, G. et al. Polyploid formation in cotton is not accompanied by rapid genomic changes Genome, 44 (2001),pp. 321-330
    [32]
    Liu, B., Vega, J.M., Segal, G. et al. Genome, 41 (1998),pp. 272-277
    [33]
    Liu, B., Vega, J.M., Feldman, M. Genome, 41 (1998),pp. 535-542
    [34]
    Liu, B., Xu, C., Zhao, N. et al. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement J. Genet. Genomics, 36 (2009),pp. 519-528
    [35]
    Ma, X.F., Gustafson, J.P. Genome evolution of allopolyploids: a process of cytological and genetic diploidization Cytogenet. Genome Res., 109 (2005),pp. 236-249
    [36]
    Ma, X.F., Gustafson, J.P. Allopolyploidization-accommodated genomic sequence changes in triticale Ann. Bot., 101 (2008),pp. 825-832
    [37]
    McClelland, M., Nelson, M., Raschke, E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases Nucleic Acids Res., 22 (1994),pp. 3640-3659
    [38]
    Madlung, A., Tyagi, A.P., Watson, B. et al. Plant J., 41 (2005),pp. 221-230
    [39]
    McClintock, B. The significance of responses of the genome to challenge Science, 226 (1984),pp. 792-801
    [40]
    Otto, S.P., Whitton, J. Polyploid incidence and evolution Ann. Rev. Genet., 34 (2000),pp. 401-437
    [41]
    Otto, S.P. The evolutionary consequences of polyploidy Cell, 131 (2007),pp. 452-462
    [42]
    Ozkan, H., Levy, A.A., Feldman, M. Plant Cell, 13 (2001),pp. 1735-1747
    [43]
    Parisod, C., Salmon, A., Zerjal, T. et al. New Phytol., 184 (2009),pp. 1003-1015
    [44]
    Paun, O., Fay, M.F., Soltis, D.E. et al. Genetic and epigenetic alterations after hybridization and genome doubling Taxon, 56 (2007),pp. 649-656
    [45]
    Pumphrey, M., Bai, J., Laudencia-Chingcuanco, D. et al. Non-additive expression of homoeologous genes is established upon polyploidization in hhexaploid wheat Genetics, 181 (2009),pp. 1147-1157
    [46]
    Salmon, A., Ainouche, M.L., Wendel, J.F. Mol. Ecol., 14 (2005),pp. 1163-1175
    [47]
    Shaked, H., Kashkush, K., Ozkan, H. et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat Plant Cell, 13 (2001),pp. 1749-1759
    [48]
    Song, K., Lu, P., Tang, K. et al. Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 7719-7723
    [49]
    Suzuki, K., Suzuki, I., Leodolter, A. et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage Cancer Cell, 9 (2006),pp. 199-207
    [50]
    Vos, P., Hogers, R., Bleeker, M. et al. AFLP: a new technique for DNA fingerprinting Nucleic Acids Res., 23 (1995),pp. 4407-4414
    [51]
    Wang, J., Tian, L., Lee, H.-S. et al. Genomewide nonadditive gene regulation in arabidopsis allotetraploids Genetics, 172 (2006),pp. 507-517
    [52]
    Wang, Y.-M., Dong, Z.-Y., Zhang, Z.-J. et al. Genetics, 170 (2005),pp. 1945-1956
    [53]
    Wendel, J.F. Genome evolution in polyploids Plant Mol. Biol., 42 (2000),pp. 225-249
    [54]
    Xu, Y., Zhong, L., Wu, X. et al. Planta, 229 (2009),pp. 471-483
  • Relative Articles

    [1]Lu Fu, Chen Gu, Kazufumi Mochizuki, Jie Xiong, Wei Miao, Guangying Wang. The genome-wide meiotic recombination landscape in ciliates and its implications for crossover regulation and genome evolution[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.013
    [2]Zihao Wang, Lingfeng Miao, Yongming Chen, Huiru Peng, Zhongfu Ni, Qixin Sun, Weilong Guo. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.002
    [3]Guosheng Ma, Xiaojing Zhao, Xinyi Shentu, Liye Zhang. Point mutations of homologs as an adaptive solution to the gene loss[J]. Journal of Genetics and Genomics, 2023, 50(7): 511-518. doi: 10.1016/j.jgg.2023.02.012
    [4]Dongxue Zhao, Yan Zhang, Yizeng Lu, Liqiang Fan, Zhibin Zhang, Jian Zheng, Mao Chai. Genome sequence and transcriptome of Sorbus pohuashanensis provide insights into population evolution and leaf sunburn response[J]. Journal of Genetics and Genomics, 2022, 49(6): 547-558. doi: 10.1016/j.jgg.2021.12.009
    [5]Tarek K. Motawi, Olfat G. Shaker, Soha O. Hassanin, Shaymaa G. Ibrahim, Mahmoud A. Senousy. Genetic and epigenetic control on clock genes in multiple sclerosis[J]. Journal of Genetics and Genomics, 2022, 49(1): 74-76. doi: 10.1016/j.jgg.2021.07.016
    [6]Wei-Hong Sun, Shuang Xiang, Qi-Gong Zhang, Lin Xiao, Diyang Zhang, Peilan Zhang, De-Qiang Chen, Yang Hao, Ding-Kun Liu, Le Ding, Yifan Li, Hui Ni, Yifan Wang, Xi Wu, Fu-Hui Liu, Guo-Rui Chen, Guo-Yong Han, Jin-Zhang Chen, Bao-Chun Su, Jin-Xing Gao, Xiao-Hui Wan, Zhiwen Wang, Yicun Chen, Yang-Dong Wang, Wei Huang, Bobin Liu, Xiao-Xing Zou, Lin Ni, Zhong-Jian Liu, Shuang-Quan Zou. The camphor tree genome enhances the understanding of magnoliid evolution[J]. Journal of Genetics and Genomics, 2022, 49(3): 249-253. doi: 10.1016/j.jgg.2021.11.001
    [7]Yang Hao, Yu-Zhen Zhou, Bin Chen, Gui-Zhen Chen, Zhen-Ying Wen, Diyang Zhang, Wei-Hong Sun, Ding-Kun Liu, Jie Huang, Jin-Liao Chen, Xiao-Qin Zhou, Wan-Lin Fan, Wen-Chun Zhang, Lin Luo, Wen-Chao Han, Yan Zheng, Long Li, Peng-Cheng Lu, Yue Xing, Shu-Ya Liu, Jia-Ting Sun, Ying-Hui Cao, Yan-Ping Zhang, Xiao-Ling Shi, Sha-Sha Wu, Ye Ai, Jun-Wen Zhai, Si-Ren Lan, Zhong-Jian Liu, Dong-Hui Peng. The Melastoma dodecandrum genome and the evolution of Myrtales[J]. Journal of Genetics and Genomics, 2022, 49(2): 120-131. doi: 10.1016/j.jgg.2021.10.004
    [8]Wenhong Zu, Hang Zhang, Xun Lan, Xu Tan. Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs[J]. Journal of Genetics and Genomics, 2020, 47(1): 49-60. doi: 10.1016/j.jgg.2019.12.001
    [9]Jacob D. Washburn, Mitchell J. McElfresh, James A. Birchler. Progressive heterosis in genetically defined tetraploid maize[J]. Journal of Genetics and Genomics, 2019, 46(8): 389-396. doi: 10.1016/j.jgg.2019.02.010
    [10]Zhiguo Wu, Yan Yang, Gai Huang, Jing Lin, Yuying Xia, Yuxian Zhu. Cotton functional genomics reveals global insight into genome evolution and fiber development[J]. Journal of Genetics and Genomics, 2017, 44(11): 511-518. doi: 10.1016/j.jgg.2017.09.009
    [11]Jing Yuan, Perry Bateman, Jose Gutierrez-Marcos. Genetic and epigenetic control of transfer cell development in plants[J]. Journal of Genetics and Genomics, 2016, 43(9): 533-539. doi: 10.1016/j.jgg.2016.08.002
    [12]Xiang Guo, Qinghua Shi, Jing Wang, Yanlin Hou, Yuhai Wang, Fangpu Han. Characterization and Genome Changes of New Amphiploids from Wheat Wide Hybridization[J]. Journal of Genetics and Genomics, 2015, 42(8): 459-461. doi: 10.1016/j.jgg.2015.06.006
    [13]Shengxin Chang, Jianmei Chen, Yankun Wang, Bingchao Gu, Jianbo He, Pu Chu, Rongzhan Guan. The Mitochondrial Genome of Raphanus sativus and Gene Evolution of Cruciferous Mitochondrial Types[J]. Journal of Genetics and Genomics, 2013, 40(3): 117-126. doi: 10.1016/j.jgg.2013.01.003
    [14]Yuan Chen, Yun Ding, Zuming Zhang, Wen Wang, Jun-Yuan Chen, Naoto Ueno, Bingyu Mao. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes[J]. Journal of Genetics and Genomics, 2011, 38(12): 577-584. doi: 10.1016/j.jgg.2011.10.004
    [15]Wuyun Yang, Dengcai Liu, Jun Li, Lianquan Zhang, Huiting Wei, Xiaorong Hu, Youliang Zheng, Zhouhu He, Yuchun Zou. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China[J]. Journal of Genetics and Genomics, 2009, 36(9): 539-546. doi: 10.1016/S1673-8527(08)60145-9
    [16]Moshe Feldman, Avraham A. Levy. Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes[J]. Journal of Genetics and Genomics, 2009, 36(9): 511-518. doi: 10.1016/S1673-8527(08)60142-3
    [17]Bao Liu, Chunming Xu, Na Zhao, Bao Qi, Josphert N. Kimatu, Jinsong Pang, Fangpu Han. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement[J]. Journal of Genetics and Genomics, 2009, 36(9): 519-528. doi: 10.1016/S1673-8527(08)60143-5
    [18]Yan Zhang, Liqun Liang, Peng Jiang, Dayu Li, Cuiyun Lu, Xiaowen Sun. Genome evolution trend of common carp (Cyprinus carpio L.) as revealed by the analysis of microsatellite loci in a gynogentic family[J]. Journal of Genetics and Genomics, 2008, 35(2): 97-103. doi: 10.1016/S1673-8527(08)60015-6
    [19]Xuexia Ma, Yezhang Ding, Baoliang Zhou, Wangzhen Guo, Yanhui Lv, Xiefei Zhu, Tianzhen Zhang. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium[J]. Journal of Genetics and Genomics, 2008, 35(12): 751-762. doi: 10.1016/S1673-8527(08)60231-3
    [20]Haiyan Wang, Xiu'e Wang, Peidu Chen, Dajun Liu. Assessment of Genetic Diversity of Yunnan, Tibetan, and Xinjiang Wheat Using SSR Markers[J]. Journal of Genetics and Genomics, 2007, 34(7): 623-633. doi: 10.1016/S1673-8527(07)60071-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return