[1] |
Baarends, W.M., Wassenaar, E., Hoogerbrugge, J.W. et al. Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome J. Cell Sci., 120 (2007),pp. 1841-1851
|
[2] |
Baarends, W.M., Wassenaar, E., van der Laan, R. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis Mol. Cell. Biol., 25 (2005),pp. 1041-1053
|
[3] |
Baltus, A.E., Menke, D.B., Hu, Y.-C. et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication Nat. Genet., 38 (2006),pp. 1430-1434
|
[4] |
Bannister, A.J., Kouzarides, T. Regulation of chromatin by histone modifications Cell Res., 21 (2011),pp. 381-395
|
[5] |
Bannister, A.J., Zegerman, P., Partridge, J.F. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain Nature, 410 (2001),pp. 120-124
|
[6] |
Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
|
[7] |
Baudat, F., Buard, J., Grey, C. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice Science, 327 (2010),pp. 836-840
|
[8] |
Baudat, F., Manova, K., Yuen, J.P. et al. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11 Mol. Cell, 6 (2000),pp. 989-998
|
[9] |
Baumann, C., De La Fuente, R. Role of polycomb group protein Cbx2/M33 in meiosis onset and maintenance of chromosome stability in the mammalian germline Genes (Basel.), 2 (2011),pp. 59-80
|
[10] |
Bellani, M.A., Romanienko, P.J., Cairatti, D.A. et al. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes J. Cell Sci., 118 (2005),pp. 3233-3245
|
[11] |
Borde, V., de Massy, B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure Curr. Opin. Genet. Dev., 23 (2013),pp. 147-155
|
[12] |
Bourc'his, D., Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L Nature, 431 (2004),pp. 96-99
|
[13] |
Bourc'his, D., Xu, G.L., Lin, C.S. et al. Dnmt3L and the establishment of maternal genomic imprints Science, 294 (2001),pp. 2536-2539
|
[14] |
Braun, S., Madhani, H.D. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin EMBO Rep., 13 (2012),pp. 619-630
|
[15] |
Brick, K., Smagulova, F., Khil, P. et al. Genetic recombination is directed away from functional genomic elements in mice Nature, 485 (2012),pp. 642-645
|
[16] |
Buard, J., Barthès, P., Grey, C. et al. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse EMBO J., 28 (2009),pp. 2616-2624
|
[17] |
Cao, J., Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer Front. Oncol., 2 (2012),p. 26
|
[18] |
Cao, R., Tsukada, Y.-I., Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing Mol. Cell, 20 (2005),pp. 845-854
|
[19] |
Cao, R., Wang, L., Wang, H. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing Science, 298 (2002),pp. 1039-1043
|
[20] |
Carmell, M.A., Girard, A., van de Kant, H.J.G. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline Dev. Cell, 12 (2007),pp. 503-514
|
[21] |
Cedar, H., Bergman, Y. Programming of DNA methylation patterns Annu. Rev. Biochem., 81 (2012),pp. 97-117
|
[22] |
Celeste, A., Petersen, S., Romanienko, P.J. et al. Genomic instability in mice lacking histone H2AX Science, 296 (2002),pp. 922-927
|
[23] |
Chicheportiche, A., Bernardino-Sgherri, J., de Massy, B. et al. Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse J. Cell Sci., 120 (2007),pp. 1733-1742
|
[24] |
Cohen, P.E., Pollack, S.E., Pollard, J.W. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals Endocr. Rev., 27 (2006),pp. 398-426
|
[25] |
Crichton, J.H., Dunican, D.S., Maclennan, M. et al. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline Cell. Mol. Life Sci (2013)
|
[26] |
Deaton, A.M., Bird, A. CpG islands and the regulation of transcription Genes Dev., 25 (2011),pp. 1010-1022
|
[27] |
De La Fuente, R., Baumann, C., Fan, T. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells Nat. Cell Biol., 8 (2006),pp. 1448-1454
|
[28] |
Dennis, K., Fan, T., Geiman, T. et al. Lsh, a member of the SNF2 family, is required for genome-wide methylation Genes Dev., 15 (2001),pp. 2940-2944
|
[29] |
Endoh, M., Endo, T.A., Endoh, T. et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity PLoS Genet., 8 (2012),p. e1002774
|
[30] |
Eskeland, R., Leeb, M., Grimes, G.R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination Mol. Cell, 38 (2010),pp. 452-464
|
[31] |
Fernandez-Capetillo, O., Mahadevaiah, S.K., Celeste, A. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis Dev. Cell, 4 (2003),pp. 497-508
|
[32] |
Gaucher, J., Boussouar, F., Montellier, E. et al. Bromodomain-dependent stage-specific male genome programming by Brdt EMBO J., 31 (2012),pp. 3809-3820
|
[33] |
Grey, C., Barthès, P., Chauveau-Le Friec, G. et al. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination PLoS Biol., 9 (2011),p. e1001176
|
[34] |
Hackett, J.A., Reddington, J.P., Nestor, C.E. et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline Development, 139 (2012),pp. 3623-3632
|
[35] |
Hackett, J.A., Sengupta, R., Zylicz, J.J. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine Science, 339 (2013),pp. 448-452
|
[36] |
Hackett, J.A., Surani, M.A. DNA methylation dynamics during the mammalian life cycle Philos. Trans. R. Soc. Lond. B Biol. Sci., 368 (2013),p. 20110328
|
[37] |
Hajkova, P., Erhardt, S., Lane, N. et al. Epigenetic reprogramming in mouse primordial germ cells Mech. Dev., 117 (2002),pp. 15-23
|
[38] |
Handel, M.A., Schimenti, J.C. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility Nat. Rev. Genet., 11 (2010),pp. 124-136
|
[39] |
Hata, K., Okano, M., Lei, H. et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice Development, 129 (2002),pp. 1983-1993
|
[40] |
Hayashi, K., Yoshida, K., Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase Nature, 438 (2005),pp. 374-378
|
[41] |
Hendrich, B., Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins Mol. Cell. Biol., 18 (1998),pp. 6538-6547
|
[42] |
Ichijima, Y., Ichijima, M., Lou, Z. et al. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells Genes Dev., 25 (2011),pp. 959-971
|
[43] |
Ito, S., Shen, L., Dai, Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine Science, 333 (2011),pp. 1300-1303
|
[44] |
Kaneda, M., Okano, M., Hata, K. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting Nature, 429 (2004),pp. 900-903
|
[45] |
Kato, Y., Kaneda, M., Hata, K. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse Hum. Mol. Genet., 16 (2007),pp. 2272-2280
|
[46] |
Khalil, A.M., Boyar, F.Z., Driscoll, D.J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 16583-16587
|
[47] |
Kouznetsova, A., Wang, H., Bellani, M. et al. BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes J. Cell Sci., 122 (2009),pp. 2446-2452
|
[48] |
La Salle, S., Mertineit, C., Taketo, T. et al. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells Dev. Biol., 268 (2004),pp. 403-415
|
[49] |
Leeb, M., Pasini, D., Novatchkova, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes Genes Dev., 24 (2010),pp. 265-276
|
[50] |
Lewis, J.D., Meehan, R.R., Henzel, W.J. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA Cell, 69 (1992),pp. 905-914
|
[51] |
Lu, L.-Y., Wu, J., Ye, L. et al. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis Dev. Cell, 18 (2010),pp. 371-384
|
[52] |
Mahadevaiah, S.K., Bourc'his, D., de Rooij, D.G. et al. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation J. Cell Biol., 182 (2008),pp. 263-276
|
[53] |
Mahadevaiah, S.K., Turner, J.M., Baudat, F. et al. Recombinational DNA double-strand breaks in mice precede synapsis Nat. Genet., 27 (2001),pp. 271-276
|
[54] |
Meissner, A., Mikkelsen, T.S., Gu, H. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells Nature, 454 (2008),pp. 766-770
|
[55] |
Mihola, O., Trachtulec, Z., Vlcek, C. et al. A mouse speciation gene encodes a meiotic histone H3 methyltransferase Science, 323 (2009),pp. 373-375
|
[56] |
Musselman, C.A., Lalonde, M.-E., Côté, J. et al. Perceiving the epigenetic landscape through histone readers Nat. Struct. Mol. Biol., 19 (2012),pp. 1218-1227
|
[57] |
Myant, K., Stancheva, I. LSH cooperates with DNA methyltransferases to repress transcription Mol. Cell. Biol., 28 (2008),pp. 215-226
|
[58] |
Nickerson, H.D., Joshi, A., Wolgemuth, D.J. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis Dev. Biol., 306 (2007),pp. 725-735
|
[59] |
Okano, M., Bell, D.W., Haber, D.A. et al. Cell, 99 (1999),pp. 247-257
|
[60] |
Ollinger, R., Reichmann, J., Adams, I.R. Meiosis and retrotransposon silencing during germ cell development in mice Differentiation, 79 (2010),pp. 147-158
|
[61] |
Peters, A.H., O'Carroll, D., Scherthan, H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability Cell, 107 (2001),pp. 323-337
|
[62] |
Pivot-Pajot, C., Caron, C., Govin, J. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein Mol. Cell. Biol., 23 (2003),pp. 5354-5365
|
[63] |
Prokhortchouk, A., Hendrich, B., Jørgensen, H. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor Genes Dev., 15 (2001),pp. 1613-1618
|
[64] |
Reddington, J.P., Pennings, S., Meehan, R.R. Non-canonical functions of the DNA methylome in gene regulation Biochem. J., 451 (2013),pp. 13-23
|
[65] |
Reddington, J.P., Perricone, S.M., Nestor, C.E. et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of polycomb target genes Genome Biol., 14 (2013),p. R25
|
[66] |
Reichmann, J., Crichton, J.H., Madej, M.J. et al. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells PLoS Comput. Biol., 8 (2012),p. e1002486
|
[67] |
Reichmann, J., Reddington, J.P., Best, D. et al. The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice Hum. Mol. Genet., 22 (2013),pp. 1791-1806
|
[68] |
Rogakou, E.P., Pilch, D.R., Orr, A.H. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 J. Biol. Chem., 273 (1998),pp. 5858-5868
|
[69] |
Romanienko, P.J., Camerini-Otero, R.D. The mouse Spo11 gene is required for meiotic chromosome synapsis Mol. Cell, 6 (2000),pp. 975-987
|
[70] |
Sasaki, K., Ito, T., Nishino, N. et al. Real-time imaging of histone H4 hyperacetylation in living cells Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 16257-16262
|
[71] |
Schneider, R., Bannister, A.J., Myers, F.A. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes Nat. Cell Biol., 6 (2004),pp. 73-77
|
[72] |
Seki, Y., Hayashi, K., Itoh, K. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice Dev. Biol., 278 (2005),pp. 440-458
|
[73] |
Simon, J.A., Kingston, R.E. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put Mol. Cell, 49 (2013),pp. 808-824
|
[74] |
Smagulova, F., Gregoretti, I.V., Brick, K. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots Nature, 472 (2011),pp. 375-378
|
[75] |
Suetake, I., Shinozaki, F., Miyagawa, J. et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction J. Biol. Chem., 279 (2004),pp. 27816-27823
|
[76] |
Sun, L.-Q., Lee, D.W., Zhang, Q. et al. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG Genes Dev., 18 (2004),pp. 1035-1046
|
[77] |
Tachibana, M., Nozaki, M., Takeda, N. et al. Functional dynamics of H3K9 methylation during meiotic prophase progression EMBO J., 26 (2007),pp. 3346-3359
|
[78] |
Takada, Y., Naruse, C., Costa, Y. et al. HP1γ links histone methylation marks to meiotic synapsis in mice Development, 138 (2011),pp. 4207-4217
|
[79] |
Tan, M., Luo, H., Lee, S. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification Cell, 146 (2011),pp. 1016-1028
|
[80] |
Tavares, L., Dimitrova, E., Oxley, D. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 Cell, 148 (2012),pp. 664-678
|
[81] |
Turner, J.M.A. Meiotic sex chromosome inactivation Development, 134 (2007),pp. 1823-1831
|
[82] |
Turner, J.M.A., Mahadevaiah, S.K., Fernandez-Capetillo, O. et al. Silencing of unsynapsed meiotic chromosomes in the mouse Nat. Genet., 37 (2005),pp. 41-47
|
[83] |
Weber, M., Hellmann, I., Stadler, M.B. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome Nat. Genet., 39 (2007),pp. 457-466
|
[84] |
Webster, K.E., O'Bryan, M.K., Fletcher, S. et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 4068-4073
|
[85] |
Wiench, M., John, S., Baek, S. et al. DNA methylation status predicts cell type-specific enhancer activity EMBO J., 30 (2011),pp. 3028-3039
|
[86] |
Yamaguchi, S., Hong, K., Liu, R. et al. Tet1 controls meiosis by regulating meiotic gene expression Nature, 492 (2012),pp. 443-447
|
[87] |
Yaman, R., Grandjean, V. Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis Mol. Reprod. Dev., 73 (2006),pp. 390-397
|
[88] |
Yokobayashi, S., Liang, C.-Y., Kohler, H. et al. PRC1 coordinates timing of sexual differentiation of female primordial germ cells Nature, 495 (2013),pp. 236-240
|
[89] |
Zeng, W., Baumann, C., Schmidtmann, A. et al. Lymphoid-specific helicase (HELLS) is essential for meiotic progression in mouse spermatocytes Biol. Reprod., 84 (2011),pp. 1235-1241
|
[90] |
Zentner, G.E., Henikoff, S. Regulation of nucleosome dynamics by histone modifications Nat. Struct. Mol. Biol., 20 (2013),pp. 259-266
|