5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 3
Mar.  2016

Comprehensive Analysis of Pan-African Mitochondrial DNA Variation Provides New Insights into Continental Variation and Demography

doi: 10.1016/j.jgg.2015.09.005
More Information
  • Corresponding author: E-mail address: antonio.salas@usc.es (Antonio Salas)
  • Received Date: 2015-05-26
  • Accepted Date: 2015-09-15
  • Rev Recd Date: 2015-07-30
  • Available Online: 2015-09-25
  • Publish Date: 2016-03-20
  • Africa is the cradle of all human beings, and although it has been the focus of a number of genetic studies, there are many questions that remain unresolved. We have performed one of the largest and most comprehensive meta-analyses of mitochondrial DNA (mtDNA) lineages carried out in the African continent to date. We generated high-throughput mtDNA single nucleotide polymorphism (SNP) data (230 SNPs) from 2024 Africans, where more than 500 of them were additionally genotyped for the control region. These data were analyzed together with over 12,700 control region profiles collected from the literature, representing more than 300 population samples from Africa. Insights into the African homeland of humans are discussed. Phylogeographic patterns for the African continent are shown at a high phylogeographic resolution as well as at the population and regional levels. The deepest branch of the mtDNA tree, haplogroup L0, shows the highest sub-haplogroup diversity in Southeast and East Africa, suggesting this region as the homeland for modern humans. Several demographic estimates point to the coast as a facilitator of human migration in Africa, but the data indicate complex patterns, perhaps mirroring the effect of recent continental-scaled demographic events in re-shaping African mtDNA variability.
  • These authors contributed equally to this work.
  • [1]
    Andrews, R.M., Kubacka, I., Chinnery, P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nat. Genet., 23 (1999),p. 147
    [2]
    Bandelt, H.-J., Salas, A., Bravi, C.M. Problems in FBI mtDNA database Science, 305 (2004),pp. 1402-1404
    [3]
    Bandelt, H.-J., Salas, A., Lutz-Bonengel, S. Artificial recombination in forensic mtDNA population databases Int. J. Legal Med., 118 (2004),pp. 267-273
    [4]
    Barbieri, C., Vicente, M., Rocha, J. et al. Ancient substructure in early mtDNA lineages of southern Africa Am. J. Hum. Genet., 92 (2013),pp. 285-292
    [5]
    Batini, C., Coia, V., Battaggia, C. et al. Phylogeography of the human mitochondrial L1c haplogroup: genetic signatures of the prehistory of Central Africa Mol. Phylogenet. Evol., 43 (2007),pp. 635-644
    [6]
    Beerli, P.
    [7]
    Behar, D.M., Villems, R., Soodyall, H. et al. The dawn of human matrilineal diversity Am. J. Hum. Genet., 82 (2008),pp. 1130-1140
    [8]
    Beleza, S., Gusmão, L., Amorim, A. et al. The genetic legacy of western Bantu migrations Hum. Genet., 117 (2005),pp. 366-375
    [9]
    Blome, M.W., Cohen, A.S., Tryon, C.A. et al. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000-30,000 years ago J. Hum. Evol., 62 (2012),pp. 563-592
    [10]
    Bodner, M., Perego, U.A., Huber, G. et al. Rapid coastal spread of First Americans: novel insights from South America's Southern Cone mitochondrial genomes Genome Res., 22 (2012),pp. 811-820
    [11]
    Brucato, N., Cassar, O., Tonasso, L. et al. The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana BMC Evol. Biol., 10 (2010),p. 314
    [12]
    Cann, R.L., Stoneking, M., Wilson, A.C. Mitochondrial DNA and human evolution Nature, 325 (1987),pp. 31-36
    [13]
    Cerezo, M., Bandelt, H.-J., Martín-Guerrero, I. et al. High mitochondrial DNA stability in B-cell chronic lymphocytic leukemia PLoS One, 4 (2009),p. e7902
    [14]
    Cerezo, M., Černý, V., Carracedo, Á. et al. Applications of MALDI-TOF MS to large-scale human mtDNA population-based studies Electrophoresis, 30 (2009),pp. 3665-3673
    [15]
    Cerezo, M., Černý, V., Carracedo, Á. et al. New insights into the Lake Chad Basin population structure revealed by high-throughput genotyping of mitochondrial DNA coding SNPs PLoS One, 6 (2011),p. e18682
    [16]
    Černý, V., Hájek, M., Bromova, M. et al. MtDNA of Fulani nomads and their genetic relationships to neighboring sedentary populations Hum. Biol., 78 (2006),pp. 9-27
    [17]
    Černý, V., Pereira, L., Musilova, E. et al. Genetic structure of pastoral and farmer populations in the African Sahel Mol. Biol. Evol., 28 (2011),pp. 2491-2500
    [18]
    Černý, V., Salas, A., Hájek, M. et al. A bidirectional corridor in the Sahel-Sudan belt and the distinctive features of the Chad Basin populations: a history revealed by the mitochondrial DNA genome Ann. Hum. Genet., 71 (2007),pp. 433-452
    [19]
    Chen, Y.-S., Torroni, A., Excoffier, L. et al. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups Am. J. Hum. Genet., 57 (1995),pp. 133-149
    [20]
    de Filippo, C., Bostoen, K., Stoneking, M. et al. Bringing together linguistic and genetic evidence to test the Bantu expansion Proc. Biol. Sci., 279 (2012),pp. 3256-3263
    [21]
    Drummond, A.J., Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees BMC Evol. Biol., 7 (2007),p. 214
    [22]
    Drummond, A.J., Rambaut, A., Shapiro, B. et al. Bayesian coalescent inference of past population dynamics from molecular sequences Mol. Biol. Evol., 22 (2005),pp. 1185-1192
    [23]
    Elson, J.L., Majamaa, K., Howell, N. et al. Associating mitochondrial DNA variation with complex traits Am. J. Hum. Genet., 80 (2007),pp. 378-382
    [24]
    Excoffier, L., Smouse, P.E., Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data Genetics, 131 (1992),pp. 479-491
    [25]
    Gonder, M.K., Mortensen, H.M., Reed, F.A. et al. Whole-mtDNA genome sequence analysis of ancient African lineages Mol. Biol. Evol., 24 (2007),pp. 757-768
    [26]
    Kivisild, T., Reidla, M., Metspalu, E. et al. Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears Am. J. Hum. Genet., 75 (2004),pp. 752-770
    [27]
    Klein, H.S.
    [28]
    Kuhner, M.K. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters Bioinformatics, 22 (2006),pp. 768-770
    [29]
    Kujanová, M., Pereira, L., Fernandes, V. et al. Near eastern neolithic genetic input in a small oasis of the Egyptian Western Desert Am. J. Phys. Anthropol., 140 (2009),pp. 336-346
    [30]
    Li, S., Schlebusch, C., Jakobsson, M. Genetic variation reveals large-scale population expansion and migration during the expansion of Bantu-speaking peoples Proc. Biol. Sci., 281 (2014),p. 20141448
    [31]
    Librado, P., Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data Bioinformatics, 25 (2009),pp. 1451-1452
    [32]
    Olivieri, A., Achilli, A., Pala, M. et al. The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa Science, 314 (2006),pp. 1767-1770
    [33]
    Perego, U.A., Achilli, A., Angerhofer, N. et al. Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups Curr. Biol., 19 (2009),pp. 1-8
    [34]
    Perego, U.A., Angerhofer, N., Pala, M. et al. The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia Genome Res., 20 (2010),pp. 1174-1179
    [35]
    Pereira, L., Černý, V., Cerezo, M. et al. Linking the sub-Saharan and West Eurasian gene pools: maternal and paternal heritage of the Tuareg nomads from the African Sahel Eur. J. Hum. Genet., 18 (2010),pp. 915-923
    [36]
    Pereira, L., Macaulay, V., Torroni, A. et al. Prehistoric and historic traces in the mtDNA of Mozambique: insights into the Bantu expansions and the slave trade Ann. Hum. Genet., 65 (2001),pp. 439-458
    [37]
    Plaza, S., Salas, A., Calafell, F. et al. Insights into the western Bantu dispersal: mtDNA lineage analysis in Angola Hum. Genet., 115 (2004),pp. 439-447
    [38]
    Podgorná, E., Soares, P., Pereira, L. et al. The genetic impact of the lake chad basin population in North Africa as documented by mitochondrial diversity and internal variation of the L3e5 haplogroup Ann. Hum. Genet., 77 (2013),pp. 513-523
    [39]
    Posada, D. jModelTest: phylogenetic model averaging Mol. Biol. Evol., 25 (2008),pp. 1253-1256
    [40]
    Quintana-Murci, L., Quach, H., Harmant, C. et al. Maternal traces of deep common ancestry and asymmetric gene flow between Pygmy hunter-gatherers and Bantu-speaking farmers Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 1596-1601
    [41]
    Reich, D., Patterson, N., Campbell, D. et al. Reconstructing Native American population history Nature, 488 (2012),pp. 370-374
    [42]
    Rito, T., Richards, M.B., Fernandes, V. et al. The first modern human dispersals across Africa PLoS One, 8 (2013),p. e80031
    [43]
    Salas, A., Carracedo, Á., Macaulay, V. et al. A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics Biochem. Biophys. Res. Commun., 335 (2005),pp. 891-899
    [44]
    Salas, A., Carracedo, Á., Richards, M. et al. Charting the ancestry of African Americans Am. J. Hum. Genet., 77 (2005),pp. 676-680
    [45]
    Salas, A., Coble, M., Desmyter, S. et al. A cautionary note on switching mitochondrial DNA reference sequences in forensic genetics Forensic Sci. Int. Genet., 6 (2012),pp. e182-e184
    [46]
    Salas, A., Richards, M., De la Fé, T. et al. The making of the African mtDNA landscape Am. J. Hum. Genet., 71 (2002),pp. 1082-1111
    [47]
    Salas, A., Richards, M., Lareu, M.V. et al. The African diaspora: mitochondrial DNA and the Atlantic slave trade Am. J. Hum. Genet., 74 (2004),pp. 454-465
    [48]
    Salas, A., Torroni, A., Richards, M. et al. The phylogeography of mitochondrial DNA haplogroup L3g in Africa and the Atlantic Slave Trade Am. J. Hum. Genet., 75 (2004),pp. 524-526
    [49]
    Soares, P., Alshamali, F., Pereira, J.B. et al. The Expansion of mtDNA Haplogroup L3 within and out of Africa Mol. Biol. Evol., 29 (2012),pp. 915-927
    [50]
    Soares, P., Ermini, L., Thomson, N. et al. Correcting for purifying selection: an improved human mitochondrial molecular clock Am. J. Hum. Genet., 84 (2009),pp. 740-759
    [51]
    Stefflova, K., Dulik, M.C., Barnholtz-Sloan, J.S. et al. Dissecting the within-Africa ancestry of populations of African descent in the Americas PLoS One, 6 (2011),p. e14495
    [52]
    Tishkoff, S.A., Gonder, M.K., Henn, B.M. et al. History of click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic variation Mol. Biol. Evol., 24 (2007),pp. 2180-2195
    [53]
    van Oven, M., Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation Hum. Mutat., 30 (2009),pp. e386-e394
    [54]
    Veeramah, K.R., Connell, B.A., Pour, N.A. et al. Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria BMC Evol. Biol., 10 (2010),p. 92
    [55]
    Veeramah, K.R., Wegmann, D., Woerner, A. et al. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data Mol. Biol. Evol., 29 (2012),pp. 617-630
    [56]
    Verdu, P., Becker, N.S., Froment, A. et al. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies Mol. Biol. Evol., 30 (2013),pp. 918-937
    [57]
    Vigilant, L.A.
    [58]
    Watson, E., Forster, P., Richards, M. et al. Mitochondrial footprints of human expansions in Africa Am. J. Hum. Genet., 61 (1997),pp. 691-704
  • Relative Articles

    [1]Chuan-Chao Wang, Ling-Xiang Wang, Rukesh Shrestha, Shaoqing Wen, Manfei Zhang, Xinzhu Tong, Li Jin, Hui Li. Convergence of Y Chromosome STR Haplotypes from Different SNP Haplogroups Compromises Accuracy of Haplogroup Prediction[J]. Journal of Genetics and Genomics, 2015, 42(7): 403-407. doi: 10.1016/j.jgg.2015.03.008
    [2]Qingyang Huang. Genetic Study of Complex Diseases in the Post-GWAS Era[J]. Journal of Genetics and Genomics, 2015, 42(3): 87-98. doi: 10.1016/j.jgg.2015.02.001
    [3]Yan Guo, Chung-I Li, Quanhu Sheng, Jeanette F. Winther, Qiuyin Cai, John D. Boice, Yu Shyr. Very Low-Level Heteroplasmy mtDNA Variations Are Inherited in Humans[J]. Journal of Genetics and Genomics, 2013, 40(12): 607-615. doi: 10.1016/j.jgg.2013.10.003
    [4]Ling Xu, Shi-Yi Chen, Wen-Hui Nie, Xue-Long Jiang, Yong-Gang Yao. Evaluating the Phylogenetic Position of Chinese Tree Shrew (Tupaia belangeri chinensis) Based on Complete Mitochondrial Genome: Implication for Using Tree Shrew as an Alternative Experimental Animal to Primates in Biomedical Research[J]. Journal of Genetics and Genomics, 2012, 39(3): 131-137. doi: 10.1016/j.jgg.2012.02.003
    [5]Jung-Ha Kang, Ki Hwan Yu, Jung-Youn Park, Chul-Min An, Je-Cheon Jun, Sang-Jun Lee. Allele-specific PCR genotyping of the HSP70 gene polymorphism discriminating the green and red color variants sea cucumber (Apostichopus japonicus)[J]. Journal of Genetics and Genomics, 2011, 38(8): 351-355. doi: 10.1016/j.jgg.2011.06.002
    [6]Hua-Wei Wang, Bikash Mitra, Tapas Kumar Chaudhuri, Malliya gounder Palanichamy, Qing-Peng Kong, Ya-Ping Zhang. Mitochondrial DNA evidence supports northeast Indian origin of the aboriginal Andamanese in the Late Paleolithic[J]. Journal of Genetics and Genomics, 2011, 38(3): 117-122. doi: 10.1016/j.jgg.2011.02.005
    [7]Yina Cun, Jin Li, Wenru Tang, Xiaozhi Sheng, Haijing Yu, Bingrong Zheng, Chunjie Xiao. Association of WNK1 exon 1 polymorphisms with essential hypertension in Hani and Yi minorities of China[J]. Journal of Genetics and Genomics, 2011, 38(4): 165-171. doi: 10.1016/j.jgg.2011.03.004
    [8]Ying Wang, Xiaofeng Zhao, Xiaoling Jiang, Xuchuan Hua, Ningying Xu. Molecular characterization of thyroid peroxidase gene in porcine (sus scrofa)[J]. Journal of Genetics and Genomics, 2010, 37(6): 381-388. doi: 10.1016/S1673-8527(09)60056-4
    [9]Shangang Jia, Yan Zhou, Chuzhao Lei, Ru Yao, Zhiying Zhang, Xingtang Fang, Hong Chen. A new insight into cattle's maternal origin in six Asian countries[J]. Journal of Genetics and Genomics, 2010, 37(3): 173-180. doi: 10.1016/S1673-8527(09)60035-7
    [10]Yanrui Wu, Yina Cun, Jing Dong, Jingru Shao, Shengjun Luo, Shengjie Nie, Haijing Yu, Bingrong Zheng, Qi Wang, Chunjie Xiao. Polymorphisms in PPARD, PPARG and APM1 associated with four types of Traditional Chinese Medicine constitutions[J]. Journal of Genetics and Genomics, 2010, 37(6): 371-379. doi: 10.1016/S1673-8527(09)60055-2
    [11]Zhijun Zhou, Haiyan Ye, Yuan Huang, Fuming Shi. The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome[J]. Journal of Genetics and Genomics, 2010, 37(5): 315-324. doi: 10.1016/S1673-8527(09)60049-7
    [12]Yabing Wang, Di Zhang, Yun Liu, Yifeng Yang, Teng Zhao, Jie Xu, Sheng Li, Zuofeng Zhang, Guoyin Feng, Lin He, He Xu. Association study of the single nucleotide polymorphisms in adiponectin-associated genes with type 2 diabetes in Han Chinese[J]. Journal of Genetics and Genomics, 2009, 36(7): 417-423. doi: 10.1016/S1673-8527(08)60131-9
    [13]Yufeng Yao, Li Shi, Lei Shi, Keqin Lin, Yufen Tao, Liang Yu, Hao Sun, Xiaoqin Huang, Yanhan Li, Jiayou Chu. Polymorphic Alu insertions and their associations with MHC class I alleles and haplotypes in Han and Jinuo populations in Yunnan Province, southwest of China[J]. Journal of Genetics and Genomics, 2009, 36(1): 51-58. doi: 10.1016/S1673-8527(09)60006-0
    [14]Yanfei Ren, Jun Lv, Hua Wang, Linchuan Li, Yufa Peng, Li-Jia Qu. A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis[J]. Journal of Genetics and Genomics, 2009, 36(10): 629-639. doi: 10.1016/S1673-8527(08)60155-1
    [15]Shigeru Takasaki. Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer's patients, Parkinson's patients, type 2 diabetic patients and healthy non-obese young males[J]. Journal of Genetics and Genomics, 2009, 36(7): 425-434. doi: 10.1016/S1673-8527(08)60132-0
    [16]Feng Chen, Yajun Deng, Yonghui Dang, Bo Zhang, Haofang Mu, Xiaoguang Yu, Lin Li, Chunxia Yan, Teng Chen. Genetic polymorphism of mitochondrial DNA HVS-I and HVS-II of Chinese Tu ethnic minority group[J]. Journal of Genetics and Genomics, 2008, 35(4): 225-232. doi: 10.1016/S1673-8527(08)60031-4
    [17]Zheng Sun, Liang Ma, Robert W. Murphy, Xiansheng Zhang, Dawei Huang. Factors affecting mito-nuclear codon usage interactions in the OXPHOS system of Drosophila melanogaster[J]. Journal of Genetics and Genomics, 2008, 35(12): 729-735. doi: 10.1016/S1673-8527(08)60228-3
    [18]Wanshi Cai, Qun Fu, Xiangtian Zhou, Jia Qu, Yi Tong, Min-Xin Guan. Mitochondrial variants may influence the phenotypic manifestation of Leber's hereditary optic neuropathy-associated ND4 G11778A mutation[J]. Journal of Genetics and Genomics, 2008, 35(11): 649-655. doi: 10.1016/S1673-8527(08)60086-7
    [19]Hui Liu, Xiaobing Wu, Peng Yan, Zhigang Jiang. Polymorphism of Exon 3 of MHC Class II B Gene in Chinese Alligator (Alligator sinensis)[J]. Journal of Genetics and Genomics, 2007, 34(10): 918-929. doi: 10.1016/S1673-8527(07)60103-9
    [20]Min Zhang, Tianwen Cao, Rui Zhang, Yaping Guo, Yihao Duan, Enbo Ma. Phylogeny of Apaturinae Butterflies (Lepidoptera: Nymphalidae) Based on Mitochondrial Cytochrome Oxidase? Gene[J]. Journal of Genetics and Genomics, 2007, 34(9): 812-823. doi: 10.1016/S1673-8527(07)60092-7
  • Cited by

    Periodical cited type(11)

    1. Mayordomo, A.C., Gagliardi, F., Simão, F. et al. Using uniparental genetic profiles to unravel the complexity of Argentine admixed populations. Forensic Science International: Genetics, 2025, 76: 103216. doi:10.1016/j.fsigen.2024.103216
    2. Nguidi, M., Gomes, V., Vullo, C. et al. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Scientific Reports, 2024, 14(1): 15653. doi:10.1038/s41598-024-65428-z
    3. Tamburrini, C., de Saint Pierre, M., Bravi, C.M. et al. Uniparental origins of the admixed Argentine Patagonia. American Journal of Human Biology, 2022, 34(4): e23682. doi:10.1002/ajhb.23682
    4. Olaechea-Lázaro, S., García, Ó., González-Montelongo, R. et al. Complete mitogenome in a population sample from Cameroon. Forensic Science International: Genetics, 2021, 55: 102597. doi:10.1016/j.fsigen.2021.102597
    5. Ferragut, J.F., Ramon, C., Castro, J.A. et al. Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Scientific Reports, 2020, 10(1): 21428. doi:10.1038/s41598-020-78487-9
    6. Martínez, B., Simão, F., Gomes, V. et al. Searching for the roots of the first free African American community. Scientific Reports, 2020, 10(1): 20634. doi:10.1038/s41598-020-77608-8
    7. Göbel, T.M.K., Bodner, M., Robino, C. et al. Mitochondrial DNA variation in Sub-Saharan Africa: Forensic data from a mixed West African sample, Côte d'Ivoire (Ivory Coast), and Rwanda. Forensic Science International: Genetics, 2020, 44: 102202. doi:10.1016/j.fsigen.2019.102202
    8. Martínez, B., Nguidi, M., Catelli, L. et al. Mitochondrial genetic profile of the Yoruba population from Nigeria. Forensic Science International: Genetics Supplement Series, 2019, 7(1): 807-809. doi:10.1016/j.fsigss.2019.10.185
    9. Wood, M.R., Sturk-Andreaggi, K., Ring, J.D. et al. Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Science International: Genetics, 2019, 43: 102143. doi:10.1016/j.fsigen.2019.102143
    10. Fleskes, R.E., Bruwelheide, K.S., West, F.L. et al. Ancient DNA and bioarchaeological perspectives on European and African diversity and relationships on the colonial Delaware frontier. American Journal of Physical Anthropology, 2019, 170(2): 232-245. doi:10.1002/ajpa.23887
    11. Simão, F., Ferreira, A.P., de Carvalho, E.F. et al. Defining mtDNA origins and population stratification in Rio de Janeiro. Forensic Science International: Genetics, 2018, 34: 97-104. doi:10.1016/j.fsigen.2018.02.003

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-032025-042025-0502468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.4 %FULLTEXT: 22.4 %META: 77.0 %META: 77.0 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.2 %其他: 1.2 %Belgium: 1.8 %Belgium: 1.8 %China: 28.5 %China: 28.5 %Nigeria: 2.4 %Nigeria: 2.4 %Russian Federation: 11.5 %Russian Federation: 11.5 %United States: 54.5 %United States: 54.5 %其他BelgiumChinaNigeriaRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (126) PDF downloads (1) Cited by (11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return