[1] |
Abdel-Ghany, S.E., Pilon, M. J. Biol. Chem., 283 (2008),pp. 15932-15945
|
[2] |
Achard, P., Herr, A., Baulcombe, D.C. et al. Modulation of floral development by a gibberellin-regulated microRNA Development, 131 (2004),pp. 3357-3365
|
[3] |
Allen, E., Xie, Z.X., Gustafson, A.M. et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants Cell, 121 (2005),pp. 207-221
|
[4] |
Bari, R., Pant, B.D., Stitt, M. et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants Plant Physiol., 141 (2006),pp. 988-999
|
[5] |
Burkhead, J.L., Reynolds, K.A.G., Abdel-Ghany, S.E. et al. Copper homeostasis New Phytol., 182 (2009),pp. 799-816
|
[6] |
Cai, H.M., Lu, Y.G., Xie, W.B. et al. Transcriptome response to nitrogen starvation in rice J. Biosci., 37 (2012),pp. 731-747
|
[7] |
Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
|
[8] |
Chen, Z.X., Li, F.L., Yang, S.N. et al. PLoS One, 8 (2013),p. e82844
|
[9] |
Chiou, T.J., Aung, K., Lin, S.I. et al. Plant Cell, 18 (2006),pp. 412-421
|
[10] |
Delhaize, E., Randall, P.J. Plant Physiol., 107 (1995),pp. 207-213
|
[11] |
Duan, K., Yi, K.K., Dang, L. et al. Plant J., 54 (2008),pp. 965-975
|
[12] |
Fujii, H., Chiou, T.J., Lin, S.I. et al. Curr. Biol., 15 (2005),pp. 2038-2043
|
[13] |
Gifford, M.L., Dean, A., Gutierrez, R.A. et al. Cell-specific nitrogen responses mediate developmental plasticity Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 803-808
|
[14] |
Guo, H.S., Xie, Q., Fei, J.F. et al. Plant Cell, 17 (2005),pp. 1376-1386
|
[15] |
Gutierrez, R.A. Systems biology for enhanced plant nitrogen nutrition Science, 336 (2012),pp. 1673-1675
|
[16] |
Gutierrez, R.A., Lejay, L.V., Dean, A. et al. Genome Biol., 8 (2007),p. R7
|
[17] |
Ha, M., Kim, V.N. Regulation of microRNA biogenesis Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 509-524
|
[18] |
Hafner, M., Landgraf, P., Ludwig, J. et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing Methods, 44 (2008),pp. 3-12
|
[19] |
He, H., Liang, G., Li, Y. et al. Plant Physiol., 164 (2014),pp. 853-865
|
[20] |
Heisel, S.E., Zhang, Y.J., Allen, E. et al. Characterization of unique small RNA populations from rice grain PLoS One, 3 (2008),p. e2871
|
[21] |
Ho, C.H., Lin, S.H., Hu, H.C. et al. CHL1 functions as a nitrate sensor in plant Cell, 138 (2009),pp. 1184-1194
|
[22] |
Ho, C.H., Tsay, Y.F. Nitrate, ammonium, and potassium sensing and signaling Curr. Opin. Plant Biol., 13 (2010),pp. 604-610
|
[23] |
Hu, B., Wang, W., Deng, K. et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice Front. Plant Sci., 6 (2015),p. 188
|
[24] |
Hu, B., Wang, W., Ou, S. et al. Nat. Genet., 47 (2015),pp. 834-838
|
[25] |
Hu, B., Zhu, C.G., Li, F. et al. Plant Physiol., 156 (2011),pp. 1101-1115
|
[26] |
Jeong, D.H., Green, P.J. The role of rice microRNAs in abiotic stress responses J. Plant Biol., 56 (2013),pp. 187-197
|
[27] |
Jeong, D.H., Park, S., Zhai, J. et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage Plant Cell, 23 (2011),pp. 4185-4207
|
[28] |
Kant, S., Bi, Y.M., Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency J. Exp. Bot., 62 (2011),pp. 1499-1509
|
[29] |
Kant, S., Peng, M., Rothstein, S.J. PLoS Genet., 7 (2011),p. e1002021
|
[30] |
Kasschau, K.D., Fahlgren, N., Chapman, E.J. et al. PLoS Biol., 5 (2007),pp. 479-493
|
[31] |
Kawashima, C.G., Yoshimoto, N., Maruyama-Nakashita, A. et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types Plant J., 57 (2009),pp. 313-321
|
[32] |
Kehr, J. Systemic regulation of mineral homeostasis by microRNAs Front. Plant Sci., 4 (2013),p. 145
|
[33] |
Khraiwesh, B., Zhu, J.K., Zhu, J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants Biochim. Biophys. Acta, 1819 (2012),pp. 137-148
|
[34] |
Kidner, C.A. The many roles of small RNAs in leaf development J. Genet. Genomics, 37 (2010),pp. 13-21
|
[35] |
Lauressergues, D., Couzigou, J.M., San Clemente, H. et al. Primary transcripts of microRNAs encode regulatory peptides Nature, 520 (2015),pp. 90-93
|
[36] |
Li, J., Reichel, M., Li, Y. et al. The functional scope of plant microRNA-mediated silencing Trends Plant Sci., 19 (2014),pp. 750-756
|
[37] |
Li, L.Y., Yang, C., He, Y. et al. Expression patterns of microRNAs in different organs and developmental stages of a superhybrid rice LYP9 and its parental lines Plant Biol., 16 (2014),pp. 878-887
|
[38] |
Liang, G., He, H., Yu, D.Q. PLoS One, 7 (2012),p. e48951
|
[39] |
Liang, G., Yang, F., Yu, D. Plant J., 62 (2010),pp. 1046-1057
|
[40] |
Lin, W.Y., Huang, T.K., Chiou, T.J. Plant Cell, 25 (2013),pp. 4061-4074
|
[41] |
Mallory, A.C., Bartel, D.P., Bartel, B. Plant Cell, 17 (2005),pp. 1360-1375
|
[42] |
Mallory, A.C., Vaucheret, H. Functions of microRNAs and related small RNAs in plants Nat. Genet., 8 (2006),pp. S31-S36
|
[43] |
Matzke, M.A., Mosher, R.A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity Nat. Rev. Genet., 15 (2014),pp. 394-408
|
[44] |
Medici, A., Krouk, G. The primary nitrate response: a multifaceted signalling pathway J. Exp. Bot., 65 (2014),pp. 5567-5576
|
[45] |
Nakamura, A., Umemura, I., Gomi, K. et al. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein Plant J., 46 (2006),pp. 297-306
|
[46] |
Nischal, L., Mohsin, M., Khan, I. et al. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes PLoS One, 7 (2012),p. e50261
|
[47] |
Palenchar, P.M., Kouranov, A., Lejay, L.V. et al. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants Genome Biol., 5 (2004),p. R91
|
[48] |
Pant, B.D., Musialak-Lange, M., Nuc, P. et al. Plant Physiol., 150 (2009),pp. 1541-1555
|
[49] |
Peng, T., Lv, Q., Zhang, J. et al. J. Exp. Bot., 62 (2011),pp. 4943-4954
|
[50] |
Popova, O.V., Dinh, H.Q., Aufsatz, W. et al. Mol. Plant, 6 (2013),pp. 396-410
|
[51] |
Rajagopalan, R., Vaucheret, H., Trejo, J. et al. Genes Dev., 20 (2006),pp. 3407-3425
|
[52] |
Ruby, J.G., Jan, C., Player, C. et al. Cell, 127 (2006),pp. 1193-1207
|
[53] |
Scheible, W.R., Morcuende, R., Czechowski, T. et al. Plant Physiol., 136 (2004),pp. 2483-2499
|
[54] |
Schwab, R., Palatnik, J.F., Riester, M. et al. Specific effects of microRNAs on the plant transcriptome Dev. Cell, 8 (2005),pp. 517-527
|
[55] |
Shin, R., Berg, R.H., Schachtman, D.P. Plant Cell Physiol., 46 (2005),pp. 1350-1357
|
[56] |
Sunkar, R., Girke, T., Jain, P.K. et al. Cloning and characterization of microRNAs from rice Plant Cell, 17 (2005),pp. 1397-1411
|
[57] |
Sunkar, R., Kapoor, A., Zhu, J.K. Plant Cell, 18 (2006),pp. 2051-2065
|
[58] |
Sunkar, R., Zhu, J.K. Plant Cell, 16 (2004),pp. 2001-2019
|
[59] |
Tang, M.F., Mao, D.H., Xu, L.W. et al. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings BMC Genomics, 15 (2014),p. 835
|
[60] |
Tian, C., Zuo, Z., Qiu, J.L. Identification and characterization of ABA-responsive microRNAs in rice J. Genet. Genomics, 42 (2015),pp. 393-402
|
[61] |
Trevisan, S., Nonis, A., Begheldo, M. et al. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings Plant Cell Environ., 35 (2012),pp. 1137-1155
|
[62] |
Valdes-Lopez, O., Yang, S.S., Aparicio-Fabre, R. et al. New Phytol., 187 (2010),pp. 805-818
|
[63] |
Vidal, E.A., Araus, V., Lu, C. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 4477-4482
|
[64] |
Vidal, E.A., Moyano, T.C., Krouk, G. et al. BMC Genomics, 14 (2013),p. 701
|
[65] |
Wang, J.W., Wang, L.J., Mao, Y.B. et al. Plant Cell, 17 (2005),pp. 2204-2216
|
[66] |
Wang, W., Zhang, L., Li, H. et al. Recent progress in molecular dissection of nutrient uptake and transport in rice Sci. Sin. Vitae, 45 (2015),pp. 569-590
|
[67] |
Wang, Y., Zhang, C., Hao, Q. et al. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes PLoS One, 8 (2013),p. e67423
|
[68] |
Xie, M., Yu, B. siRNA-directed DNA methylation in plants Curr. Genomics, 16 (2015),pp. 23-31
|
[69] |
Xu, G., Fan, X., Miller, A.J. Plant nitrogen assimilation and use efficiency Annu. Rev. Plant Biol., 63 (2012),pp. 153-182
|
[70] |
Xu, Z.H., Zhong, S.H., Li, X.H. et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots PLoS One, 6 (2011),p. e28009
|
[71] |
Yan, Y., Wang, H., Hamera, S. et al. miR444a has multiple functions in the rice nitrate-signaling pathway Plant J., 78 (2014),pp. 44-55
|
[72] |
Yi, S., Gao, Z.X., Zhao, H. et al. BMC Genomics, 14 (2013),p. 754
|
[73] |
Zhang, H.M., Forde, B.G. J. Exp. Bot., 51 (2000),pp. 51-59
|
[74] |
Zhang, H.M., Tang, K., Wang, B.S. et al. Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants Plant Methods, 10 (2014),p. 18
|
[75] |
Zhao, M., Ding, H., Zhu, J.K. et al. New Phytol., 190 (2011),pp. 906-915
|
[76] |
Zhao, M., Tai, H.H., Sun, S.Z. et al. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency PLoS One, 7 (2012),p. e29669
|
[77] |
Zhao, Y.P., Xu, Z.H., Mo, Q.C. et al. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize Ann. Bot., 112 (2013),pp. 633-642
|
[1] | Chao Han, Lingyan Wang, Jinyang Lyu, Wen Shi, Lianmei Yao, Min Fan, Ming-Yi Bai. Brassinosteroid signaling and molecular crosstalk with nutrients in plants[J]. Journal of Genetics and Genomics, 2023, 50(8): 541-553. doi: 10.1016/j.jgg.2023.03.004 |
[2] | Amy E. Elias, Thomas A. Nuñez, Bianca Kun, Jill A. Kreiling. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data[J]. Journal of Genetics and Genomics, 2023, 50(2): 108-121. doi: 10.1016/j.jgg.2022.10.003 |
[3] | Yidan Ouyang, Xu Li, Qifa Zhang. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 385-393. doi: 10.1016/j.jgg.2022.02.022 |
[4] | Kangli Sun, Minghui Huang, Wubei Zong, Dongdong Xiao, Chen Lei, Yanqiu Luo, Yingang Song, Shengting Li, Yu Hao, Wanni Luo, Bingqun Xu, Xiaotong Guo, Guangliang Wei, Letian Chen, Yao-Guang Liu, Jingxin Guo. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits[J]. Journal of Genetics and Genomics, 2022, 49(5): 437-447. doi: 10.1016/j.jgg.2022.02.018 |
[5] | Penglin Zhan, Shuaipeng Ma, Zhili Xiao, Fangping Li, Xin Wei, Shaojun Lin, Xiaoling Wang, Zhe Ji, Yu Fu, Jiahao Pan, Mi Zhou, Yue Liu, Zengyuan Chang, Lu Li, Suhong Bu, Zupei Liu, Haitao Zhu, Guifu Liu, Guiquan Zhang, Shaokui Wang. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008 |
[6] | Libin Chen, Chonghui Ji, Degui Zhou, Xin Gou, Jianian Tang, Yongjie Jiang, Jingluan Han, Yao-Guang Liu, Letian Chen, Yongyao Xie. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 481-491. doi: 10.1016/j.jgg.2022.03.003 |
[7] | Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002 |
[8] | Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025 |
[9] | Xinkai Zhou, Tao Zhu, Wen Fang, Ranran Yu, Zhaohui He, Dijun Chen. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. Journal of Genetics and Genomics, 2022, 49(12): 1127-1137. doi: 10.1016/j.jgg.2022.04.003 |
[10] | Guangyu Liu, Wanxia Jiang, Lei Tian, Yongcai Fu, Lubin Tan, Zuofeng Zhu, Chuanqing Sun, Fengxia Liu. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 458-468. doi: 10.1016/j.jgg.2022.01.007 |
[11] | Hanwen Li, Jinqiang Nian, Shuang Fang, Meng Guo, Xiahe Huang, Fengxia Zhang, Qing Wang, Jian Zhang, Jiaoteng Bai, Guojun Dong, Peiyong Xin, Xianzhi Xie, Fan Chen, Guodong Wang, Yingchun Wang, Qian Qian, Jianru Zuo, Jinfang Chu, Xiaohui Ma. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 469-480. doi: 10.1016/j.jgg.2022.02.006 |
[12] | Xiaodong Xin, Xingwang Li, Junkai Zhu, Xiaobin Liu, Zhenghu Chu, Jiali Shen, Changyin Wu. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice[J]. Journal of Genetics and Genomics, 2021, 48(6): 485-496. doi: 10.1016/j.jgg.2021.04.011 |
[13] | Zhiyao Lv, Rui Dai, Haoran Xu, Yongxin Liu, Bo Bai, Ying Meng, Haiyan Li, Xiaofeng Cao, Yang Bai, Xianwei Song, Jingying Zhang. The rice histone methylation regulates hub species of the root microbiota[J]. Journal of Genetics and Genomics, 2021, 48(9): 836-843. doi: 10.1016/j.jgg.2021.06.005 |
[14] | Aili Qu, Yan Xu, Xinxing Yu, Qi Si, Xuwen Xu, Changhao Liu, Liuyi Yang, Yueping Zheng, Mengmeng Zhang, Shuqun Zhang, Juan Xu. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705. doi: 10.1016/j.jgg.2021.04.013 |
[15] | Ting Li, Bo Liu, Chih Ying Chen, Bing Yang. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice[J]. Journal of Genetics and Genomics, 2016, 43(5): 297-305. doi: 10.1016/j.jgg.2016.03.005 |
[16] | Chang Li, Zhong Tang, Jia Wei, Hongye Qu, Yanjie Xie, Guohua Xu. The OsAMT1.1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges[J]. Journal of Genetics and Genomics, 2016, 43(11): 639-649. doi: 10.1016/j.jgg.2016.11.001 |
[17] | Longhao Sun, Corrine Ying Xuan Chua, Weijun Tian, Zhixiang Zhang, Paul J. Chiao, Wei Zhang. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma[J]. Journal of Genetics and Genomics, 2015, 42(10): 563-577. doi: 10.1016/j.jgg.2015.07.003 |
[18] | Caijuan Tian, Zhangli Zuo, Jin-Long Qiu. Identification and Characterization of ABA-Responsive MicroRNAs in Rice[J]. Journal of Genetics and Genomics, 2015, 42(7): 393-402. doi: 10.1016/j.jgg.2015.04.008 |
[19] | Sihua Peng, Xiaomin Zeng, Xiaobo Li, Xiaoning Peng, Liangbiao Chen. Multi-class cancer classification through gene expression profiles: microRNA versus mRNA[J]. Journal of Genetics and Genomics, 2009, 36(7): 409-416. doi: 10.1016/S1673-8527(08)60130-7 |
[20] | Xiuying Liu, GuanZheng Luo, Xiujuan Bai, Xiu-Jie Wang. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes[J]. Journal of Genetics and Genomics, 2009, 36(10): 591-601. doi: 10.1016/S1673-8527(08)60151-4 |
1. | Gong, X., Zhang, L., Liu, Y. et al. A review on zeolitic imidazolate framework-8 based materials with special wettability for oil/water separation. Journal of Environmental Chemical Engineering, 2023, 11(6): 111360. doi:10.1016/j.jece.2023.111360 | |
2. | Du, K., Yang, Y., Li, J. et al. Functional Analysis of Bna-miR399c-PHO2 Regulatory Module Involved in Phosphorus Stress in Brassica napus. Life, 2023, 13(2): 310. doi:10.3390/life13020310 | |
3. | Chen, Y., Bai, Y., Zhang, Z. et al. Transcriptomics and metabolomics reveal the primary and secondary metabolism changes in Glycyrrhiza uralensis with different forms of nitrogen utilization. Frontiers in Plant Science, 2023. doi:10.3389/fpls.2023.1229253 | |
4. | Qin, X., Li, X., Li, C. et al. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. Frontiers in Plant Science, 2023. doi:10.3389/fpls.2023.1198809 | |
5. | Huang, C., Cheng, P., Zhang, H. et al. Identification and differential expression of cold-stress-responsive microRNAs in cold-tolerant and -susceptible Hemerocallis fulva varieties. New Zealand Journal of Crop and Horticultural Science, 2023, 51(3): 451-465. doi:10.1080/01140671.2021.2013260 | |
6. | Zhou, J., Wu, J.-T. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus × canescens. BMC Plant Biology, 2022, 22(1): 96. doi:10.1186/s12870-022-03482-3 | |
7. | Zhou, J., Yang, L.-Y., Jia, C.-L. et al. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. Frontiers in Plant Science, 2022. doi:10.3389/fpls.2022.941380 | |
8. | Zhou, J., Li, Z.-R., Wu, J.-T. Characterization of Differentially Expressed Genes in Root Tips of Poplar Under Different Nitrogen Forms | [不同氮形态处理条件下杨树根尖差异表达基因的特征分析]. Forest Research, 2022, 35(2): 45-55. doi:10.13275/j.cnki.lykxyj.2022.02.006 | |
9. | YAN, X.-X., LIU, X.-Y., CUI, H. et al. The roles of microRNAs in regulating root formation and growth in plants. Journal of Integrative Agriculture, 2022, 21(4): 901-916. doi:10.1016/S2095-3119(21)63818-2 | |
10. | Lin, Y.-J., Feng, Y.-X., Yu, X.-Z. The importance of utilizing nitrate (NO3−) over ammonium (NH4+) as nitrogen source during detoxification of exogenous thiocyanate (SCN-) in Oryza sativa. Environmental Science and Pollution Research, 2022, 29(4): 5622-5633. doi:10.1007/s11356-021-15959-z | |
11. | Zhou, J., Wu, J. Physiological characteristics and miRNA sequencing of two root zones with contrasting ammonium assimilation patterns in Populus. Genes and Genomics, 2022, 44(1): 39-51. doi:10.1007/s13258-021-01156-2 | |
12. | Neeraja, C.N., Barbadikar, K.M., Mangrauthia, S.K. et al. Genes for NUE in rice: a way forward for molecular breeding and genome editing. Plant Physiology Reports, 2021, 26(4): 587-599. doi:10.1007/s40502-021-00632-x | |
13. | Li, J., Duan, Y., Sun, N. et al. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Plant Science, 2021. doi:10.1016/j.plantsci.2021.111062 | |
14. | Chen, J.-F., Zhao, Z.-X., Li, Y. et al. Fine-Tuning Roles of Osa-miR159a in Rice Immunity Against Magnaporthe oryzae and Development. Rice, 2021, 14(1): 26. doi:10.1186/s12284-021-00469-w | |
15. | Kan, D.-X., Lu, Y., Wu, J.-T. et al. miRNAs Analysis of Poplar Root Tips Treated with Nitrate- or Ammonium-Nitrogen | [基于硝态氮或铵态氮条件下杨树根尖miRNAs特征分析]. Forest Research, 2021, 34(4): 1-12. doi:10.13275/j.cnki.lykxyj.2021.04.001 | |
16. | Sun, C., Zhang, K., Zhou, Y. et al. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. Plant Biotechnology Journal, 2021, 19(8): 1644-1657. doi:10.1111/pbi.13580 | |
17. | Zheng, Y., Zhang, X., Liu, X. et al. Nitrogen Supply Alters Rice Defense Against the Striped Stem Borer Chilo suppressalis. Frontiers in Plant Science, 2021. doi:10.3389/fpls.2021.691292 | |
18. | Kong, L., Zhang, Y., Du, W. et al. Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review. Frontiers in Plant Science, 2021. doi:10.3389/fpls.2021.656696 | |
19. | Islam, S., Zhang, J., Zhao, Y. et al. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Science, 2021. doi:10.1016/j.plantsci.2020.110759 | |
20. | Yousuf, P.Y., Shabir, P.A., Hakeem, K.R. MiRNAomic Approach to Plant Nitrogen Starvation. International Journal of Genomics, 2021. doi:10.1155/2021/8560323 | |
21. | Fan, H., Quan, S., Qi, S. et al. Novel Aspects of Nitrate Regulation in Arabidopsis. Frontiers in Plant Science, 2020. doi:10.3389/fpls.2020.574246 | |
22. | Fukuda, M., Fujiwara, T., Nishida, S. Roles of non-coding rnas in response to nitrogen availability in plants. International Journal of Molecular Sciences, 2020, 21(22): 1-15. doi:10.3390/ijms21228508 | |
23. | Zhou, J., Lu, Y., Shi, W.-G. et al. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens. Tree Physiology, 2020, 40(10): 1392-1404. doi:10.1093/TREEPHYS/TPAA071 | |
24. | Yang, Z., Wang, Z., Yang, C. et al. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Genes and Genomics, 2019, 41(10): 1183-1194. doi:10.1007/s13258-019-00848-0 | |
25. | Zuluaga, D.L., Sonnante, G. The use of nitrogen and its regulation in cereals: Structural genes, transcription factors, and the role of miRNAs. Plants, 2019, 8(8): 294. doi:10.3390/plants8080294 | |
26. | Jiang, W., Shi, W., Ma, X. et al. Identification of microRNAs responding to cold stress in Dongxiang common wild rice. Genome, 2019, 62(9): 635-642. doi:10.1139/gen-2019-0015 | |
27. | Zeng, X., Xu, Y., Jiang, J. et al. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biology, 2018, 18(1): 52. doi:10.1186/s12870-018-1242-4 | |
28. | Wang, W., Hu, B., Yuan, D. et al. Expression of the nitrate transporter gene OsNRT1.1A/ OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30(3): 638-651. doi:10.1105/tpc.17.00809 | |
29. | Shahzad, R., Harlina, P.W., Ayaad, M. et al. Dynamic roles of microRNAs in nutrient acquisition and plant adaptation under nutrient stress: A review. Plant OMICS, 2018, 11(1): 58-79. doi:10.21475/poj.11.01.18.pne1014 | |
30. | Zhao, Y., Wen, H., Teotia, S. et al. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant Biology, 2017, 17(1): 215. doi:10.1186/s12870-017-1171-7 |