5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 5
May  2016

Genome Editing: From Drosophila to Non-Model Insects and Beyond

doi: 10.1016/j.jgg.2016.04.007
More Information
  • Corresponding author: E-mail address: rongyik@mail.sysu.edu.cn (Yikang S. Rong)
  • Received Date: 2016-03-16
  • Accepted Date: 2016-04-20
  • Rev Recd Date: 2016-04-06
  • Available Online: 2016-04-30
  • Publish Date: 2016-05-20
  • Insect is the largest group of animals on land. Many insect species inflict economical and health losses to humans. Yet many more benefit us by helping to maintain balances in our ecosystem. The benefits that insects offer remain largely untapped, justifying our continuing efforts to develop tools to better understand their biology and to better manage their activities. Here we focus on reviewing the progresses made in the development of genome engineering tools for model insects. Instead of detailed descriptions of the molecular mechanisms underlying each technical advance, we focus our discussion on the logistics for implementing similar tools in non-model insects. Since none of the tools were developed specific for insects, similar approaches can be applied to other non-model organisms.
  • [1]
    Ahmad, K., Golic, K.G. Genetics, 144 (1996),pp. 657-670
    [2]
    Awata, H., Watanabe, T., Hamanaka, Y. et al. Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets Sci. Rep., 5 (2015),p. 15885
    [3]
    Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
    [4]
    Basu, S., Aryan, A., Overcash, J.M. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 4038-4043
    [5]
    Beall, E.L., Rio, D.C. Genes Dev., 11 (1997),pp. 2137-2151
    [6]
    Belfort, M., Roberts, R.J. Homing endonucleases: keeping the house in order Nucleic Acids Res., 25 (1997),pp. 3379-3388
    [7]
    Berghammer, A.J., Klingler, M., Wimmer, E.A. A universal marker for transgenic insects Nature, 402 (1999),pp. 370-371
    [8]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [9]
    Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [10]
    Caroti, F., Urbansky, S., Wosch, M. et al. Dev. Genes Evol., 225 (2015),pp. 179-186
    [11]
    Chan, K.M., Liu, Y.T., Ma, C.H. et al. Plasmid, 70 (2013),pp. 2-17
    [12]
    Cook, R.K., Christensen, S.J., Deal, J.A. et al. Genome Biol., 13 (2012),p. R21
    [13]
    Ding, S., Wu, X.H., Li, G. et al. Efficient transposition of the piggyBac resource (PB) transposon in mammalian cells and mice Cell, 122 (2005),pp. 473-483
    [14]
    Dong, S., Lin, J., Held, N.L. et al. PLoS One, 10 (2015),p. e0122353
    [15]
    Donoughe, S., Extavour, C.G. Dev. Biol., 411 (2016),pp. 140-156
    [16]
    Engels, W.R., Johnson-Schlitz, D.M., Eggleston, W.B. et al. Cell, 62 (1990),pp. 515-525
    [17]
    Fraser, M.J., Cary, L., Boonvisudhi, K. et al. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA Virology, 211 (1995),pp. 397-407
    [18]
    Fujii, T., Daimon, T., Uchino, K. et al. Insect Mol. Biol., 19 (2010),pp. 659-667
    [19]
    Gantz, V.M., Bier, E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations Science, 348 (2015),pp. 442-444
    [20]
    Gantz, V.M., Jasinskiene, N., Tatarenkova, O. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E6736-E6743
    [21]
    Gao, G., McMahon, C., Chen, J. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13999-14004
    [22]
    Gilles, A.F., Schinko, J.B., Averof, M. Development, 142 (2015),pp. 2832-2839
    [23]
    Golic Science, 252 (1991),pp. 958-961
    [24]
    Golic, K.G. RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms Genetics, 195 (2013),pp. 303-308
    [25]
    Golic, K.G., Golic, M.M. Genetics, 144 (1996),pp. 1693-1711
    [26]
    Golic, K.G., Lindquist, S. Cell, 59 (1989),pp. 499-509
    [27]
    Golic, M.M., Rong, Y.S., Petersen, R.B. et al. Nucleic Acids Res., 25 (1997),pp. 3665-3671
    [28]
    Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [29]
    Hammond, A., Galizi, R., Kyrou, K. et al. Nat. Biotechnol., 34 (2016),pp. 78-83
    [30]
    Handler, A.M. Use of the piggyBac transposon for germ-line transformation of insects Insect Biochem. Mol. Biol., 32 (2002),pp. 1211-1220
    [31]
    Huang, J., Zhou, W.K., Dong, W. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 8284-8289
    [32]
    Huis, A.v.
    [33]
    Iampietro, C., Gummalla, M., Mutero, A. et al. Initiator elements function to determine the activity state of BX-C enhancers PLoS Genet., 6 (2010),p. e1001260
    [34]
    Imamura, M., Nakai, J., Inoue, S. et al. Genetics, 165 (2003),pp. 1329-1340
    [35]
    Jasinskiene, N., Coates, C.J., Benedict, M.Q. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 3743-3747
    [36]
    Kistler, K.E., Vosshall, L.B., Matthews, B.J. Cell Rep., 11 (2015),pp. 51-60
    [37]
    Labbe, G.M., Nimmo, D.D., Alphey, L. PLoS Negl. Trop. Dis., 4 (2010),p. e788
    [38]
    Li, X., Fan, D., Zhang, W. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies Nat. Commun., 6 (2015),p. 8212
    [39]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [40]
    Liu, Y., Ma, S., Wang, X. et al. Insect Biochem. Mol. Biol., 49 (2014),pp. 35-42
    [41]
    Long, D., Zhao, A., Xu, L. et al. Insect Biochem. Mol. Biol., 43 (2013),pp. 997-1008
    [42]
    Loukeris, T.G., Livadaras, I., Arcà, B. et al. Science, 270 (1995),pp. 2002-2005
    [43]
    Manning, L., Heckscher, E.S., Purice, M.D. et al. Cell Rep., 2 (2012),pp. 1002-1013
    [44]
    Markert, M.J., Zhang, Y., Enuameh, M.S. et al. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis G3 (Bethesda), 6 (2016),pp. 905-915
    [45]
    Martins, S., Naish, N., Walker, A.S. et al. Insect Mol. Biol., 21 (2012),pp. 414-421
    [46]
    Meredith, J.M., Underhill, A., McArthur, C.C. et al. PLoS One, 8 (2013),p. e59264
    [47]
    Nafissi, N., Slavcev, R. Bacteriophage recombination systems and biotechnical applications Appl. Microbiol. Biotechnol., 98 (2014),pp. 2841-2851
    [48]
    Nakade, S., Tsubota, T., Sakane, Y. et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9 Nat. Commun., 5 (2014),p. 5560
    [49]
    O'Brochta, D.A., Atkinson, P.W. Insect Biochem. Mol. Biol., 26 (1996),pp. 739-753
    [50]
    O'Brochta, D.A., Pilitt, K.L., , Aluvihare, C. et al. G3 (Bethesda), 2 (2012),pp. 1305-1315
    [51]
    Park, S., Lim, J.K. A microinjection technque for ethanol-treated egg and a mating scheme for detection of germ line transformants Dros. Inf. Serv., 76 (1995),pp. 197-199
    [52]
    Port, F., Chen, H.M., Lee, T. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E2967-E2976
    [53]
    Port, F., Muschalik, N., Bullock, S.L. G3 (Bethesda), 5 (2015),pp. 1493-1502
    [54]
    Potter, C.J., Luo, L. PLoS One, 5 (2010),p. e10168
    [55]
    Quiring, R., Walldorf, U., Kloter, U. et al. Science, 265 (1994),pp. 785-789
    [56]
    Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
    [57]
    Rong, Y.S., Golic, K.G. Genetics, 165 (2003),pp. 1831-1842
    [58]
    Rorth, P. Mech. Dev., 78 (1998),pp. 113-118
    [59]
    Rubin, G.M., Spradling, A.C. Science, 218 (1982),pp. 348-353
    [60]
    Schetelig, M.F., Handler, A.M. G3 (Bethesda), 3 (2013),pp. 687-693
    [61]
    Schinko, J.B., Weber, M., Viktorinova, I. et al. BMC Dev. Biol., 10 (2010),p. 53
    [62]
    Siegal, M.L., Hartl, D.L. Genetics, 144 (1996),pp. 715-726
    [63]
    Spradling, A.C., Bellen, H.J., Hoskins, R.A. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 15948-15953
    [64]
    Tamura, T., Kuwabara, N., Uchino, K. et al. An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms J. Insect Biotechnol. Sericol., 76 (2007),pp. 155-159
    [65]
    Thibault, S.T., Singer, M.A., Miyazaki, W.Y. et al. Nat. Genet., 36 (2004),pp. 283-287
    [66]
    Venken, K.J., He, Y., Hoskins, R.A. et al. Science, 314 (2006),pp. 1747-1751
    [67]
    Volohonsky, G., Terenzi, O., Soichot, J. et al. G3 (Bethesda), 5 (2015),pp. 1151-1163
    [68]
    Wang, Y., Li, Z., Xu, J. et al. Cell Res., 23 (2013),pp. 1414-1416
    [69]
    Wei, W., Xin, H., Roy, B. et al. PLoS One, 9 (2014),p. e101210
    [70]
    Wesolowska, N., Rong, Y.S. Genetics, 193 (2013),pp. 411-419
    [71]
    Wilson, M.H., Coates, C.J., PiggyBac transposon-mediated gene transfer in human cells Mol. Ther., 15 (2007),pp. 139-145
    [72]
    Xu, H., O'Brochta, D.A. Proc. Biol. Sci., 282 (2015),p. 20150487
    [73]
    Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
    [74]
    Yusa, K., Zhou, L., Li, M.A. et al. A hyperactive piggyBac transposase for mammalian applications Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 1531-1536
  • Relative Articles

    [1]Yafei Zhang, Jianqiong Lin, Kaibin Yang, Zhicao Yue. Chemotherapy suppresses SHH gene expression via a specific enhancer[J]. Journal of Genetics and Genomics, 2023, 50(1): 27-37. doi: 10.1016/j.jgg.2022.08.002
    [2]Huijing Ma, Mengxia Wang, Yong E. Zhang, Shengjun Tan. The power of “controllers”: Transposon-mediated duplicated genes evolve towards neofunctionalization[J]. Journal of Genetics and Genomics, 2023, 50(7): 462-472. doi: 10.1016/j.jgg.2023.04.003
    [3]Chenggang Shi, Jing Huang, Shixi Chen, Guang Li, Yiquan Wang. Generation of two transgenic amphioxus lines using the Tol2 transposon system[J]. Journal of Genetics and Genomics, 2018, 45(9): 513-516. doi: 10.1016/j.jgg.2018.06.002
    [4]Ying Cheng, Dahua Chen. Fruit fly research in China[J]. Journal of Genetics and Genomics, 2018, 45(11): 583-592. doi: 10.1016/j.jgg.2018.09.003
    [5]Jing Yuan, Qinghua Shi, Xiang Guo, Yalin Liu, Handong Su, Xianrui Guo, Zhenling Lv, Fangpu Han. Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes[J]. Journal of Genetics and Genomics, 2017, 44(11): 531-539. doi: 10.1016/j.jgg.2017.08.005
    [6]Yuanyuan Liu, Sanyuan Ma, Jiasong Chang, Tong Zhang, Xiaogang Wang, Run Shi, Jianduo Zhang, Wei Lu, Yue Liu, Qingyou Xia. Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori[J]. Journal of Genetics and Genomics, 2017, 44(9): 451-459. doi: 10.1016/j.jgg.2017.09.003
    [7]Meizhu Bai, Dan Liang, Yinghua Wang, Qing Li, Yuxuan Wu, Jinsong Li. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9[J]. Journal of Genetics and Genomics, 2016, 43(5): 289-296. doi: 10.1016/j.jgg.2016.02.003
    [8]Ting Li, Bo Liu, Chih Ying Chen, Bing Yang. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice[J]. Journal of Genetics and Genomics, 2016, 43(5): 297-305. doi: 10.1016/j.jgg.2016.03.005
    [9]Fengjiao Chen, Ying Wang, Yilin Yuan, Wei Zhang, Zijian Ren, Yong Jin, Xiaorui Liu, Qiang Xiong, Qin Chen, Manling Zhang, Xiaokang Li, Lihua Zhao, Ze Li, Zhaoqiang Wu, Yanfei Zhang, Feifei Hu, Juan Huang, Rongfeng Li, Yifan Dai. Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting[J]. Journal of Genetics and Genomics, 2015, 42(8): 437-444. doi: 10.1016/j.jgg.2015.05.002
    [10]Jing-Dong J. Han, John R. Speakman. Targeting Ageing to Decrease Complex Non-Communicable Human Diseases[J]. Journal of Genetics and Genomics, 2014, 41(9): 457-458. doi: 10.1016/j.jgg.2014.09.002
    [11]Ming Yin, Huan Yang, Xiaohua Su, Ziyi Li, Zhanpeng Yue, Xueming Zhang, Da Sun, Yan Shi, Dexue Li. Identification of EGF as an Important Regulator for Promoting CYP3A4 Expression in Human Embryonic Stem Cell-Derived Hepatocytes Using TALEN-Based Gene Targeting[J]. Journal of Genetics and Genomics, 2014, 41(6): 349-352. doi: 10.1016/j.jgg.2014.03.008
    [12]Da Liu, Zhanxiang Wang, An Xiao, Yutian Zhang, Wenyuan Li, Yao Zu, Shaohua Yao, Shuo Lin, Bo Zhang. Efficient Gene Targeting in Zebrafish Mediated by a Zebrafish-Codon-Optimized Cas9 and Evaluation of Off-Targeting Effect[J]. Journal of Genetics and Genomics, 2014, 41(1): 43-46. doi: 10.1016/j.jgg.2013.11.004
    [13]Nana Fan, Liangxue Lai. Genetically Modified Pig Models for Human Diseases[J]. Journal of Genetics and Genomics, 2013, 40(2): 67-73. doi: 10.1016/j.jgg.2012.07.014
    [14]Chang Tong, Guanyi Huang, Charles Ashton, Hongping Wu, Hexin Yan, Qi-Long Ying. Rapid and Cost-Effective Gene Targeting in Rat Embryonic Stem Cells by TALENs[J]. Journal of Genetics and Genomics, 2012, 39(6): 275-280. doi: 10.1016/j.jgg.2012.04.004
    [15]Guili Song, Qing Li, Yong Long, Perry B. Hackett, Zongbin Cui. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon[J]. Journal of Genetics and Genomics, 2012, 39(9): 503-520. doi: 10.1016/j.jgg.2012.05.010
    [16]Yonglun Luo, Emil Kofod-Olsen, Rikke Christensen, Charlotte Brandt Sørensen, Lars Bolund. Targeted Genome Editing by Recombinant Adeno-Associated Virus (rAAV) Vectors for Generating Genetically Modified Pigs[J]. Journal of Genetics and Genomics, 2012, 39(6): 269-274. doi: 10.1016/j.jgg.2012.05.004
    [17]Peng Huang, Zuoyan Zhu, Shuo Lin, Bo Zhang. Reverse Genetic Approaches in Zebrafish[J]. Journal of Genetics and Genomics, 2012, 39(9): 421-433. doi: 10.1016/j.jgg.2012.07.004
    [18]Qingchun Zhou, Ingo Braasch, Alexander Froschauer, Astrid Böhne, Christina Schultheis, Manfred Schartl, Jean-Nicolas Volff. A novel marker for the platyfish (Xiphophorus maculatus) W chromosome is derived from a Polinton transposon[J]. Journal of Genetics and Genomics, 2010, 37(3): 181-188. doi: 10.1016/S1673-8527(09)60036-9
    [19]Haifang Qiu, Shuhong Zhao, Xuewen Xu, Martine Yerle, Bang Liu. Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene[J]. Journal of Genetics and Genomics, 2008, 35(5): 257-260. doi: 10.1016/S1673-8527(08)60036-3
    [20]Lu Yi, Zhenhua Hao, Tongtong Yang, Shaobing Wang, Baosong Xing, Yinxue Xu. cDNA Cloning, Bioinformatic and Tissue-specific Expression Analysis of Porcine JARID1C Gene[J]. Journal of Genetics and Genomics, 2007, 34(12): 1088-1096. doi: 10.1016/S1673-8527(07)60124-6
  • Cited by

    Periodical cited type(22)

    1. Tepper, K., Edwards, O., Sunna, A. et al. Diverting organic waste from landfills via insect biomanufacturing using engineered black soldier flies (Hermetia illucens). Communications Biology, 2024, 7(1): 862. doi:10.1038/s42003-024-06516-8
    2. Sui, Z., Wu, Q., Geng, J. et al. CRISPR/Cas9-mediated efficient white genome editing in the black soldier fly Hermetia illucens. Molecular Genetics and Genomics, 2024, 299(1): 5. doi:10.1007/s00438-023-02088-0
    3. Li, L., Pang, X., Wang, C. et al. piggyBac-based transgenic Helicoverpa armigera expressing the T92C allele of the tetraspanin gene HaTSPAN1 confers dominant resistance to Bacillus thuringiensis toxin Cry1Ac. Pesticide Biochemistry and Physiology, 2024. doi:10.1016/j.pestbp.2024.106096
    4. Traoré, N., Galizi, R., Kientega, M. et al. Developing genetic tools to control the Oriental fruit fly: Potential approaches and target genes. Journal of Applied Entomology, 2024, 148(8): 996-1013. doi:10.1111/jen.13314
    5. Gunther, D., Alford, R., Johnson, J. et al. Transgenic black soldier flies for production of carotenoids. Insect Biochemistry and Molecular Biology, 2024. doi:10.1016/j.ibmb.2024.104110
    6. Manduca, G., Zeni, V., Moccia, S. et al. Learning algorithms estimate pose and detect motor anomalies in flies exposed to minimal doses of a toxicant. iScience, 2023, 26(12): 108349. doi:10.1016/j.isci.2023.108349
    7. Loffet, E.A., Durel, J.F., Nerurkar, N.L. Evo-Devo Mechanobiology: The Missing Link. Integrative and Comparative Biology, 2023, 63(6): 1455-1473. doi:10.1093/icb/icad033
    8. Li, L., Zuo, Y., Shi, Y. et al. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. Insect Biochemistry and Molecular Biology, 2023. doi:10.1016/j.ibmb.2023.104042
    9. Shingleton, A.W., Vea, I.M. Sex-specific regulation of development, growth and metabolism. Seminars in Cell and Developmental Biology, 2023. doi:10.1016/j.semcdb.2022.04.017
    10. Volonté, C., Alberti, F., Vitale, G. et al. Delineating Purinergic Signaling in Drosophila. International Journal of Molecular Sciences, 2022, 23(23): 15196. doi:10.3390/ijms232315196
    11. Fan, X.-B., Mo, B.-T., Li, G.-C. et al. Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biology, 2022, 20(1): 214. doi:10.1186/s12915-022-01411-2
    12. Baud, A., McPeek, S., Chen, N. et al. Indirect Genetic Effects: A Cross-disciplinary Perspective on Empirical Studies. Journal of Heredity, 2022, 113(1): 1-15. doi:10.1093/jhered/esab059
    13. Wolf, S., Wan, Y., McDole, K. Current approaches to fate mapping and lineage tracing using image data. Development (Cambridge), 2021, 148(18): dev198994. doi:10.1242/DEV.198994
    14. Koidou, V., Denecke, S., Ioannidis, P. et al. Efficient genome editing in the olive fruit fly, Bactrocera oleae. Insect Molecular Biology, 2020, 29(4): 363-372. doi:10.1111/imb.12640
    15. Fan, X.-B., Pang, R., Li, W.-X. et al. An Overview of Embryogenesis: External Morphology and Transcriptome Profiling in the Hemipteran Insect Nilaparvata lugens. Frontiers in Physiology, 2020. doi:10.3389/fphys.2020.00106
    16. Weigand, H., Leese, F. Detecting signatures of positive selection in non-model species using genomic data. Zoological Journal of the Linnean Society, 2018, 184(2): 528-583. doi:10.1093/zoolinnean/zly007
    17. Martin-Martin, I., Aryan, A., Meneses, C. et al. Optimization of sand fly embryo microinjection for gene editing by CRISPR/Cas9. PLoS Neglected Tropical Diseases, 2018, 12(9): e0006769. doi:10.1371/journal.pntd.0006769
    18. Stevison, L.S., Sefick, S., Rushton, C. et al. Recombination rate plasticity: Revealing mechanisms by design. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1736): 20160459. doi:10.1098/rstb.2016.0459
    19. Kumagai, H., Nakanishi, T., Matsuura, T. et al. CRISPR/Cas-mediated knock-in via nonhomologous end-joining in the crustacean Daphnia magna. PLoS ONE, 2017, 12(10): e0186112. doi:10.1371/journal.pone.0186112
    20. Liu, Q., Liu, W., Zeng, B. et al. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochemistry and Molecular Biology, 2017. doi:10.1016/j.ibmb.2017.05.007
    21. Vertacnik, K.L., Linnen, C.R. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Annals of the New York Academy of Sciences, 2017, 1389(1): 186-212. doi:10.1111/nyas.13311
    22. Perkin, L.C., Adrianos, S.L., Oppert, B. Gene disruption technologies have the potential to transform stored product insect pest control. Insects, 2016, 7(3): 46. doi:10.3390/insects7030046

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads (5) Cited by (23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return