5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 2
Feb.  2017

ISWI ATP-dependent remodeling of nucleoplasmic ω-speckles in the brain of Drosophila melanogaster

doi: 10.1016/j.jgg.2016.12.002
More Information
  • Corresponding author: E-mail address: mconorati@dti.telethon.it (Maria Cristina Onorati)
  • Received Date: 2016-07-29
  • Accepted Date: 2016-12-18
  • Rev Recd Date: 2016-11-21
  • Available Online: 2016-12-22
  • Publish Date: 2017-02-20
  • Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to the RNA-binding proteins family. They are involved in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs. These proteins participate in every step of mRNA cycle, such as mRNA export, localization, translation, stability and alternative splicing. At least 14 major hnRNPs, which have structural and functional homologues in mammals, are expressed inDrosophila melanogaster. Until now, six of these hnRNPs are known to be nucleus-localized and associated with the long non-coding RNA (lncRNA) heat shock responsive ω (hsrω) in the omega speckle compartments (ω-speckles). The chromatin remodeler ISWI is the catalytic subunit of several ATP-dependent chromatin-remodeling complexes, and it is an essential factor for organization of ω-speckles. Indeed, in ISWI null mutant, severe defects in ω-speckles structure are detectable. Here, we clarify the role of ISWI in the hnRNPs‒hsrω interaction. Moreover, we describe how ISWI by its remodeling activity, controls hsrω and hnRNPs engagement in ω-speckles. Finally, we demonstrate that the sequestration of hnRNPs in ω-speckles nuclear compartment is a fundamental event in gene expression control and represents a key step in the regulation of several pathways.
  • Current address: Turku Center for Biotechnology, University of Turku, Turku FIN-20520, Finland.
  • [1]
    Anders, S., Pyl, P.T., Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data Bioinformatics, 31 (2015),pp. 166-169
    [2]
    Babic, I., Anderson, E.S., Tanaka, K. et al. EGFR mutation-induced alternative splicing of max contributes to growth of glycolytic tumors in brain cancer Cell Metab., 17 (2013),pp. 1000-1008
    [3]
    Bhat, R., Axtell, R., Mitra, A. et al. Inhibitory role for GABA in autoimmune inflammation Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 2580-2585
    [4]
    Biamonti, G., Vourc'h, C. Nuclear stress bodies Cold Spring Harb. Perspect. Biol., 2 (2010),p. a000695
    [5]
    Burgio, G., La Rocca, G., Sala, A. et al. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI PLoS Genet., 4 (2008),p. e1000089
    [6]
    Clemson, C.M., Hutchinson, J.N., Sara, S.A. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles Mol. Cell, 33 (2009),pp. 717-726
    [7]
    Corona, D.F., Langst, G., Clapier, C.R. et al. ISWI is an ATP-dependent nucleosome remodeling factor Mol. Cell, 3 (1999),pp. 239-245
    [8]
    Corona, D.F., Siriaco, G., Armstrong, J.A. et al. PLoS Biol., 5 (2007),p. e232
    [9]
    David, C.J., Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged Genes Dev., 24 (2010),pp. 2343-2364
    [10]
    Deuring, R., Fanti, L., Armstrong, J.A. et al. Mol. Cell, 5 (2000),pp. 355-365
    [11]
    Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
    [12]
    Dreyfuss, G., Kim, V.N., Kataoka, N. Messenger-RNA-binding proteins and the messages they carry Nat. Rev. Mol. Cell Biol., 3 (2002),pp. 195-205
    [13]
    Dundr, M., Misteli, T. Biogenesis of nuclear bodies Cold Spring Harb. Perspect. Biol., 2 (2010),p. a000711
    [14]
    Gao, R., Yu, Y., Inoue, A. et al. Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis J. Biol. Chem., 288 (2013),pp. 15046-15056
    [15]
    Goodrich, J.S., Clouse, K.N., Schupbach, T. Development, 131 (2004),pp. 1949-1958
    [16]
    Grune, T., Brzeski, J., Eberharter, A. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI Mol. Cell, 12 (2003),pp. 449-460
    [17]
    Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem., 97 (2006),pp. 1634-1658
    [18]
    Han, N., Li, W., Zhang, M. The function of the RNA-binding protein hnRNP in cancer metastasis J. Cancer Res. Ther., 9 (2013)
    [19]
    Hayes, J.D., Flanagan, J.U., Jowsey, I.R. Glutathione transferases Annu. Rev. Pharmacol. Toxicol., 45 (2005),pp. 51-88
    [20]
    Jean-Philippe, J., Paz, S., Caputi, M. hnRNP A1: the Swiss army knife of gene expression Int. J. Mol. Sci., 14 (2013),pp. 18999-19024
    [21]
    Jolly, C., Lakhotia, S.C. Nucleic Acids Res., 34 (2006),pp. 5508-5514
    [22]
    Kawaguchi, T., Hirose, T. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies Nucleus, 6 (2015),pp. 462-467
    [23]
    Kawaguchi, T., Tanigawa, A., Naganuma, T. et al. SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 4304-4309
    [24]
    Kim, H.J., Kim, N.C., Wang, Y.D. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS Nature, 495 (2013),pp. 467-473
    [25]
    Koga, M., Serritella, A.V., Sawa, A. et al. Implications for reactive oxygen species in schizophrenia pathogenesis Schizophr. Res., 176 (2015),pp. 52-71
    [26]
    Kore, R.A., Abraham, E.C. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells Biochem. Biophys. Res. Commun., 453 (2014),pp. 326-331
    [27]
    Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death Cell Death Differ., 17 (2010),pp. 1373-1380
    [28]
    Lakhotia, A.K.S.S.C. Chromosoma, 124 (2015),pp. 367-383
    [29]
    Lakhotia, S.C. J. Biosci., 36 (2011),pp. 399-423
    [30]
    Lakhotia, S.C., Mallik, M., Singh, A.K. et al. Chromosoma, 121 (2012),pp. 49-70
    [31]
    Lakhotia, S.C., Sharma, A. Chromosome Res., 3 (1995),pp. 151-161
    [32]
    Lamond, A.I., Earnshaw, W.C. Structure and function in the nucleus Science, 280 (1998),pp. 547-553
    [33]
    Lo Piccolo, L., Bonaccorso, R., Onorati, M.C. Int. J. Mol. Sci., 16 (2015),pp. 12360-12367
    [34]
    Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol., 15 (2014),p. 550
    [35]
    Martin, M. Cutadapt removes adapter sequences from highthroughput sequencing reads EMBnet J., 17 (2011),pp. 10-12
    [36]
    Mallik, M., Lakhotia, S.C. J. Biosci., 36 (2011),pp. 265-280
    [37]
    Manning, B.J., Peterson, C.L. Releasing the brakes on a chromatin-remodeling enzyme Nat. Struct. Mol. Biol., 20 (2013),pp. 5-7
    [38]
    Marazziti, D., Baroni, S., Picchetti, M. et al. Psychiatric disorders and mitochondrial dysfunctions Eur. Rev. Med. Pharmacol. Sci., 16 (2012),pp. 270-275
    [39]
    Marques-Rocha, J.L., Samblas, M., Milagro, F.I. et al. Noncoding RNAs, cytokines, and inflammation-related diseases FASEB J., 29 (2015),pp. 3595-3611
    [40]
    McCloy, R.A., Rogers, S., Caldon, C.E. et al. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events Cell Cycle, 13 (2014),pp. 1400-1412
    [41]
    Mueller-Planitz, F., Klinker, H., Ludwigsen, J. et al. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine Nat. Struct. Mol. Biol., 20 (2013),pp. 82-89
    [42]
    Onorati, M.C., Lazzaro, S., Mallik, M. et al. The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments PLoS Genet., 7 (2011),p. e1002096
    [43]
    Piccolo, L.L., Corona, D., Onorati, M.C. Emerging roles for hnRNPs in post-transcriptional regulation: what can we learn from flies? Chromosoma, 123 (2014),pp. 515-527
    [44]
    Prasanth, K.V., Rajendra, T.K., Lal, A.K. et al. Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila J. Cell Sci., 113 (2000),pp. 3485-3497
    [45]
    Rochfort, K.D., Cummins, P.M. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines Biochem. Soc. Trans., 43 (2015),pp. 702-706
    [46]
    Romano, M., Buratti, E. Targeting RNA binding proteins involved in neurodegeneration J. Biomol. Screen, 18 (2013),pp. 967-983
    [47]
    Singh, A.K., Lakhotia, S.C. Chromosoma, 124 (2015),pp. 367-383
    [48]
    Spector, D.L. SnapShot: cellular bodies Cell, 127 (2006),p. 1071
    [49]
    Zhao, R., Bodnar, M.S., Spector, D.L. Nuclear neighborhoods and gene expression Curr. Opin. Genet. Dev., 19 (2009),pp. 172-179
  • Relative Articles

    [1]Lu Li, Juan Li, Yuan Ou, Jiaxin Wu, Huilin Li, Xin Wang, Liying Tang, Xiangyan Dai, Conghui Yang, Zehong Wei, Zhan Yin, Yuqin Shu. Ccdc57 is required for straightening the body axis by regulating ciliary motility in the brain ventricle of zebrafish[J]. Journal of Genetics and Genomics, 2023, 50(4): 253-263. doi: 10.1016/j.jgg.2022.12.007
    [2]Zhaowei Teng, Yun Zhu, Da Lin, Qinggang Hao, Qiaoning Yue, Xiaochao Yu, Shuo Sun, Lihong Jiang, Sheng Lu. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation[J]. Journal of Genetics and Genomics, 2023, 50(4): 264-275. doi: 10.1016/j.jgg.2023.01.009
    [3]Xiaoru Zhang, Yingnan Zhang, Guangfeng Geng, Jie Gao, Jingyuan Tong, Lihong Shi, Jinhua Liu. Corrigendum to “lncRNA NEAT1 is required for splenic erythroid differentiation” [Journal of Genetics and Genomics (2023) 50, 454e457][J]. Journal of Genetics and Genomics, 2023, 50(8): 624-624. doi: 10.1016/j.jgg.2023.07.001
    [4]Xiaoru Zhang, Yingnan Zhang, Guangfeng Geng, Jie Gao, Jingyuan Tong, Lihong Shi, Jinhua Liu. lncRNA NEAT1 is required for splenic erythroid differentiation[J]. Journal of Genetics and Genomics, 2023, 50(6): 454-457. doi: 10.1016/j.jgg.2023.01.012
    [5]Bo Ding, Hongli Xie, Kangning Zhang, He Li, Yushi Gao, Jing Zhang, Bin Xu, Lianwei Peng, Guofeng Yang, Guo-Liang Wang, Upinder Gill, Zeng-Yu Wang, Maofeng Chai. Nuclear EPL-HAM complex is essential for the development of chloroplasts[J]. Journal of Genetics and Genomics, 2022, 49(12): 1165-1168. doi: 10.1016/j.jgg.2022.04.006
    [6]Shunqi Pei, Xuehui Wang, Xuan Wang, Hao Huang, Huaping Tao, Binghua Xie, Aifen Yang, Mengsheng Qiu, Zhou Tan. Aberrant nuclear lamina contributes to the malignancy of human gliomas[J]. Journal of Genetics and Genomics, 2022, 49(2): 132-144. doi: 10.1016/j.jgg.2021.08.013
    [7]Weijun Guo, Hanqing Liu, Yifan Wang, Pingxian Zhang, Dongwei Li, Tuoyu Liu, Qian Zhang, Liwen Yang, Li Pu, Jian Tian, Xiaofeng Gu. SMOC: a smart model for open chromatin region prediction in rice genomes[J]. Journal of Genetics and Genomics, 2022, 49(5): 514-517. doi: 10.1016/j.jgg.2022.02.012
    [8]Youshang Zhao, Ting Jiang, Lei Li, Xiaotuo Zhang, Tianyu Yang, Cuimei Liu, Jinfang Chu, Binglian Zheng. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis[J]. Journal of Genetics and Genomics, 2021, 48(2): 123-133. doi: 10.1016/j.jgg.2021.02.003
    [9]Yin Chen, Xiangning Ding, Shiyou Wang, Peiwen Ding, Zaoxu Xu, Jiankang Li, Mingyue Wang, Rong Xiang, Xiaoling Wang, Haoyu Wang, Qikai Feng, Jiaying Qiu, Feiyue Wang, Zhen Huang, Xingliang Zhang, Gen Tang, Shengping Tang. A single-cell atlas of mouse olfactory bulb chromatin accessibility[J]. Journal of Genetics and Genomics, 2021, 48(2): 147-162. doi: 10.1016/j.jgg.2021.02.007
    [10]Niu Jing, Zhang Xu, Li Guipeng, Yan Pixi, Yan Qing, Dai Qionghai, Jin Dayong, Shen Xiaohua, Wang Jichang, Zhang Michael Q., Gao Juntao. Tn5-FISH, a novel cytogenetic method to image chromatin interactions with sub-kilobase resolution[J]. Journal of Genetics and Genomics, 2020, 47(12): 727-734. doi: 10.1016/j.jgg.2020.04.008
    [11]Fangfang Tao, Xinxin Tian, Mengxi Lu, Zhiqian Zhang. A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c[J]. Journal of Genetics and Genomics, 2018, 45(3): 137-145. doi: 10.1016/j.jgg.2018.03.001
    [12]Leyun Wang, Fei Teng, Xuewei Yuan, Chao Liu, Jiaqiang Wang, Yufei Li, Tongtong Cui, Tianda Li, Zhonghua Liu, Qi Zhou. Overexpression of Stella improves the efficiency of nuclear transfer reprogramming[J]. Journal of Genetics and Genomics, 2017, 44(7): 363-366. doi: 10.1016/j.jgg.2017.06.001
    [13]Zhikun Li, Libin Wang, Yukai Wang, Lei Liu, Liu Wang, Wei Li, Qi Zhou. Generation of an LncRNA Gtl2-GFP Reporter for Rapid Assessment of Pluripotency in Mouse Induced Pluripotent Stem Cells[J]. Journal of Genetics and Genomics, 2015, 42(3): 125-128. doi: 10.1016/j.jgg.2015.02.004
    [14]James H. Crichton, Christopher J. Playfoot, Ian R. Adams. The Role of Chromatin Modifications in Progression through Mouse Meiotic Prophase[J]. Journal of Genetics and Genomics, 2014, 41(3): 97-106. doi: 10.1016/j.jgg.2014.01.003
    [15]Mingyou Li, Yongming Yuan, Yunhan Hong. Identification of the RNAs for Transcription Factor Mitf as a Component of the Balbiani Body[J]. Journal of Genetics and Genomics, 2013, 40(2): 75-81. doi: 10.1016/j.jgg.2012.12.006
    [16]Chuan-Fang Wu, Guang-Hong Tan, Cheng-Chuan Ma, Ling Li. The Non-Coding RNA Llme23 Drives the Malignant Property of Human Melanoma Cells[J]. Journal of Genetics and Genomics, 2013, 40(4): 179-188. doi: 10.1016/j.jgg.2013.03.001
    [17]Can Zhang, Bo Liu, Guangyao Li, Lei Zhou. Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila[J]. Journal of Genetics and Genomics, 2011, 38(10): 453-460. doi: 10.1016/j.jgg.2011.09.007
    [18]Jinghua Yang, Mingfang Zhang, Jingquan Yu. Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants[J]. Journal of Genetics and Genomics, 2008, 35(2): 65-71. doi: 10.1016/S1673-8527(08)60010-7
    [19]Song Hua, Zhipeng Zhang, Chi Zhang, Yong Zhang. An Improved Enucleation Method of Bovine Somatic Cell Nuclear Transfer[J]. Journal of Genetics and Genomics, 2007, 34(6): 491-496. doi: 10.1016/S1673-8527(07)60054-X
    [20]Dongying Yang, Hong Chen, Xinzhuang Wang, Zhihuan Tian, Ligang Tang, Zhengfeng Zhang, Chuzhao Lei, Liangzhi Zhang, Yimin Wang. Association of Polymorphisms of Leptin Gene with Body Weight and Body Sizes Indexes in Chinese Indigenous Cattle[J]. Journal of Genetics and Genomics, 2007, 34(5): 400-405. doi: 10.1016/S1673-8527(07)60043-5
  • Cited by

    Periodical cited type(7)

    1. Singh, A.K.. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. Life, 2023, 13(1): 17. doi:10.3390/life13010017
    2. Piccolo, L.L., Mochizuki, H., Nagai, Y. The lncRNA hsrω regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila. Journal of Cell Science, 2019, 132(20): jcs236836. doi:10.1242/jcs.236836
    3. Muraoka, Y., Nakamura, A., Tanaka, R. et al. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs. Experimental Neurology, 2018. doi:10.1016/j.expneurol.2018.08.009
    4. Lo Piccolo, L., Bonaccorso, R., Attardi, A. et al. Loss of ISWI function in Drosophila nuclear bodies drives cytoplasmic redistribution of Drosophila TDP-43. International Journal of Molecular Sciences, 2018, 19(4): 1082. doi:10.3390/ijms19041082
    5. Lo Piccolo, L.. Drosophila as a model to gain insight into the role of lncRNAs in neurological disorders. Advances in Experimental Medicine and Biology, 2018. doi:10.1007/978-981-13-0529-0_8
    6. Lo Piccolo, L., Jantrapirom, S., Nagai, Y. et al. FUS toxicity is rescued by the modulation of lncRNA hsrω expression in Drosophila melanogaster. Scientific Reports, 2017, 7(1): 15660. doi:10.1038/s41598-017-15944-y
    7. Dargemont, C., Babour, A. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription. Nucleus, 2017, 8(5): 482-488. doi:10.1080/19491034.2017.1342916

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.6 %FULLTEXT: 22.6 %META: 75.7 %META: 75.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionChina: 44.3 %China: 44.3 %Other: 2.6 %Other: 2.6 %Russian Federation: 7.0 %Russian Federation: 7.0 %United States: 46.1 %United States: 46.1 %ChinaOtherRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (2) Cited by (7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return