5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 7
Jul.  2018

The DrugPattern tool for drug set enrichment analysis and its prediction for beneficial effects of oxLDL on type 2 diabetes

doi: 10.1016/j.jgg.2018.07.002
More Information
  • Corresponding author: E-mail address: yangj@bjmu.edu.cn (Jichun Yang); E-mail address: cuiqinghua@bjmu.edu.cn (Qinghua Cui)
  • Received Date: 2018-01-08
  • Accepted Date: 2018-07-04
  • Rev Recd Date: 2018-05-18
  • Available Online: 2018-07-24
  • Publish Date: 2018-07-20
  • Enrichment analysis methods, e.g., gene set enrichment analysis, represent one class of important bioinformatical resources for mining patterns in biomedical datasets. However, tools for inferring patterns and rules of a list of drugs are limited. In this study, we developed a web-based tool, DrugPattern, for drug set enrichment analysis. We first collected and curated 7019 drug sets, including indications, adverse reactions, targets, pathways, etc. from public databases. For a list of interested drugs, DrugPattern then evaluates the significance of the enrichment of these drugs in each of the 7019 drug sets. To validate DrugPattern, we employed it for the prediction of the effects of oxidized low-density lipoprotein (oxLDL), a factor expected to be deleterious. We predicted that oxLDL has beneficial effects on some diseases, most of which were supported by evidence in the literature. Because DrugPattern predicted the potential beneficial effects of oxLDL in type 2 diabetes (T2D), animal experiments were then performed to further verify this prediction. As a result, the experimental evidences validated the DrugPattern prediction that oxLDL indeed has beneficial effects on T2D in the case of energy restriction. These data confirmed the prediction accuracy of our approach and revealed unexpected protective roles for oxLDL in various diseases. This study provides a tool to infer patterns and rules in biomedical datasets based on drug set enrichment analysis. DrugPattern is available at http://www.cuilab.cn/drugpattern.
  • These authors contributed equally to this work.
  • [1]
    Bahadoran, Z., Mirmiran, P., Hosseinpanah, F. et al. Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial Diabetes Res. Clin. Pract., 96 (2012),pp. 348-354
    [2]
    Boezio, B., Audouze, K., Ducrot, P. et al. Network-based approaches in pharmacology Mol. Inform. (2017)
    [3]
    Cai, M.C., Xu, Q., Pan, Y.J. et al. ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms Nucleic Acids Res., 43 (2015),pp. D907-D913
    [4]
    Calara, F., Dimayuga, P., Niemann, A. et al. An animal model to study local oxidation of LDL and its biological effects in the arterial wall Arterioscler. Thromb. Vasc. Biol., 18 (1998),pp. 884-893
    [5]
    Chaussabel, D., Pulendran, B. A vision and a prescription for big data-enabled medicine Nat. Immunol., 16 (2015),pp. 435-439
    [6]
    Culver, A.L., Ockene, I.S., Balasubramanian, R. et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women's Health Initiative Arch. Intern. Med., 172 (2012),pp. 144-152
    [7]
    de Lemos, J.A., Rohatgi, A., Ayers, C.R. Applying a big data approach to biomarker discovery: running before we walk? Circulation, 132 (2015),pp. 2289-2292
    [8]
    Galland, F., Duvillard, L., Petit, J.M. et al. Effect of insulin treatment on plasma oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients Diabetes Metab., 32 (2006),pp. 625-631
    [9]
    Gerstein, H.C., Pare, G., McQueen, M.J. et al. Identifying novel biomarkers for cardiovascular events or death in people with dysglycemia Circulation, 132 (2015),pp. 2297-2304
    [10]
    Ginsberg, J., Mohebbi, M.H., Patel, R.S. et al. Detecting influenza epidemics using search engine query data Nature, 457 (2009),pp. 1012-1014
    [11]
    Goldstein, J.L., Brown, M.S. A century of cholesterol and coronaries: from plaques to genes to statins Cell, 161 (2015),pp. 161-172
    [12]
    Gradinaru, D., Borsa, C., Ionescu, C. et al. Oxidized LDL and NO synthesis–Biomarkers of endothelial dysfunction and ageing Mech. Ageing Dev., 151 (2015),pp. 101-113
    [13]
    Hamazaki, T., Okuyama, H., Ogushi, Y. et al. Towards a paradigm shift in cholesterol treatment. A re-examination of the cholesterol issue in Japan Ann. Nutr. Metab., 66 (2015)
    [14]
    Hofnagel, O., Luechtenborg, B., Weissen-Plenz, G. et al. Statins and foam cell formation: impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors Biochim. Biophys. Acta, 1771 (2007),pp. 1117-1124
    [15]
    Hoogeveen, R.C., Ballantyne, C.M., Bang, H. et al. Circulating oxidised low-density lipoprotein and intercellular adhesion molecule-1 and risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study Diabetologia, 50 (2007),pp. 36-42
    [16]
    Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [17]
    Jiang, P., Liu, X.S. Big data mining yields novel insights on cancer Nat. Genet., 47 (2015),pp. 103-104
    [18]
    Kankainen, M., Gopalacharyulu, P., Holm, L. et al. MPEA–metabolite pathway enrichment analysis Bioinformatics, 27 (2011),pp. 1878-1879
    [19]
    Lamb, J., Crawford, E.D., Peck, D. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease Science, 313 (2006),pp. 1929-1935
    [20]
    Law, V., Knox, C., Djoumbou, Y. et al. DrugBank 4.0: shedding new light on drug metabolism Nucleic Acids Res., 42 (2014),pp. D1091-D1097
    [21]
    Li, J., Chi, Y., Wang, C. et al. Pancreatic-derived factor promotes lipogenesis in the mouse liver: role of the Forkhead box 1 signaling pathway Hepatology, 53 (2011),pp. 1906-1916
    [22]
    Li, L., Cheng, W.Y., Glicksberg, B.S. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity Sci. Transl. Med., 7 (2015)
    [23]
    Li, Z., Wang, S., Zhao, W. et al. Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-kappaB signaling Mol. Med. Rep., 13 (2016),pp. 1709-1716
    [24]
    Lotta, L.A., Sharp, S.J., Burgess, S. et al. Association between low-density pipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis J. Am. Med. Assoc., 316 (2016),pp. 1383-1391
    [25]
    Lu, M., Shi, B., Wang, J. et al. TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs BMC Bioinf., 11 (2010),p. 419
    [26]
    Ma, Y., Culver, A., Rossouw, J. et al. Statin therapy and the risk for diabetes among adult women: do the benefits outweigh the risk? Ther. Adv. Cardiovasc. Dis., 7 (2013),pp. 41-44
    [27]
    Marin, M.T., Dasari, P.S., Tryggestad, J.B. et al. Oxidized HDL and LDL in adolescents with type 2 diabetes compared to normal weight and obese peers J. Diabet. Complicat., 29 (2015),pp. 679-685
    [28]
    Mayer-Schonberger, V. Big data for cardiology: novel discovery? Eur. Heart J., 37 (2016),pp. 996-1001
    [29]
    Mikhailidis, D.P., Athyros, V.G. Dyslipidaemia in 2013: new statin guidelines and promising novel therapeutics Nat. Rev. Cardiol., 11 (2014),pp. 72-74
    [30]
    Napolitano, F., Sirci, F., Carrella, D. et al. Drug-set enrichment analysis: a novel tool to investigate drug mode of action Bioinformatics, 32 (2016),pp. 235-241
    [31]
    Newman, T.B., Hulley, S.B. Carcinogenicity of lipid-lowering drugs J. Am. Med. Assoc., 275 (1996),pp. 55-60
    [32]
    Persons, J.E., Fiedorowicz, J.G. Depression and serum low-density lipoprotein: a systematic review and meta-analysis J. Affect. Disord., 206 (2016),pp. 55-67
    [33]
    Ravnskov, U. High cholesterol may protect against infections and atherosclerosis QJM, 96 (2003),pp. 927-934
    [34]
    Ravnskov, U., Diamond, D.M., Hama, R. et al. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review BMJ Open, 6 (2016)
    [35]
    Ravnskov, U., McCully, K.S., Rosch, P.J. The statin-low cholesterol-cancer conundrum QJM, 105 (2012),pp. 383-388
    [36]
    Ridker, P.M., Pradhan, A., MacFadyen, J.G. et al. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial Lancet, 380 (2012),pp. 565-571
    [37]
    Ried, J.S., Doring, A., Oexle, K. et al. PSEA: phenotype set enrichment analysis–a new method for analysis of multiple phenotypes Genet. Epidemiol., 36 (2012),pp. 244-252
    [38]
    Rumsfeld, J.S., Joynt, K.E., Maddox, T.M. Big data analytics to improve cardiovascular care: promise and challenges Nat. Rev. Cardiol., 13 (2016),pp. 350-359
    [39]
    Sleire, L., Forde-Tislevoll, H.E., Netland, I.A. et al. Drug repurposing in cancer Pharmacol. Res., 124 (2017),pp. 74-91
    [40]
    Steinberg, D. Lewis A. Conner memorial lecture. Oxidative modification of LDL and atherogenesis Circulation, 95 (1997),pp. 1062-1071
    [41]
    Subramanian, A., Tamayo, P., Mootha, V.K. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 15545-15550
    [42]
    von Hahn, T., Lindenbach, B.D., Boullier, A. et al. Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells Hepatology, 43 (2006),pp. 932-942
    [43]
    Wang, C., Chen, Z., Li, S. et al. Hepatic overexpression of ATP synthase beta subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice Diabetes, 63 (2014),pp. 947-959
    [44]
    Wang, C., Chi, Y., Li, J. et al. FAM3A activates PI3K p110alpha/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis Hepatology, 59 (2014),pp. 1779-1790
    [45]
    Wang, J.J., Chen, X.L., Xu, C.B. et al. The ERK1/2 pathway participates in the upregulation of the expression of mesenteric artery alpha1 receptors by intravenous tail injections of mmLDL in mice Vasc. Pharmacol., 77 (2016),pp. 80-88
    [46]
    Westhaus, S., Bankwitz, D., Ernst, S. et al. Hepatology, 57 (2013),pp. 1716-1724
    [47]
    Xia, J., Wishart, D.S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data Nucleic Acids Res., 38 (2010),pp. W71-W77
    [48]
    Yang, Z., Wang, X., Wen, J. et al. Prevalence of non-alcoholic fatty liver disease and its relation to hypoadiponectinaemia in the middle-aged and elderly Chinese population Arch. Med. Sci., 7 (2011),pp. 665-672
    [49]
    Zhu, Z., Gorman, M.J., McKenzie, L.D. et al. Zika virus has oncolytic activity against glioblastoma stem cells J. Exp. Med., 214 (2017),pp. 2843-2857
  • Relative Articles

    [1]Boxun Zhang, Xuan Zhang, Zhen Luo, Jixiang Ren, Xiaotong Yu, Haiyan Zhao, Yitian Wang, Wenhui Zhang, Weiwei Tian, Xiuxiu Wei, Qiyou Ding, Haoyu Yang, Zishan Jin, Xiaolin Tong, Jun Wang, Linhua Zhao. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.005
    [2]Amy E. Elias, Thomas A. Nuñez, Bianca Kun, Jill A. Kreiling. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data[J]. Journal of Genetics and Genomics, 2023, 50(2): 108-121. doi: 10.1016/j.jgg.2022.10.003
    [3]Jin Wu, Yingbo Chen, Xue Li, Liyuan Ran, Xiangdong Liu, Xiaoshuang Wang, Mingming Zhen, Shanshan Shao, Li Zeng, Chunru Wang, Bin Liang, Jiajun Zhao, Yingjie Wu. Functionalized gadofullerene ameliorates impaired glycolipid metabolism in type 2 diabetic mice[J]. Journal of Genetics and Genomics, 2022, 49(4): 364-376. doi: 10.1016/j.jgg.2021.09.004
    [4]Ziyin Zhang, Yue Gao, Zhuo-Xian Meng. Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes[J]. Journal of Genetics and Genomics, 2022, 49(4): 316-328. doi: 10.1016/j.jgg.2022.03.002
    [5]Fangyoumin Feng, Bihan Shen, Xiaoqin Mou, Yixue Li, Hong Li. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine[J]. Journal of Genetics and Genomics, 2021, 48(7): 540-551. doi: 10.1016/j.jgg.2021.03.007
    [6]Micah Silberstein, Nicholas Nesbit, Jacquelyn Cai, Phil H. Lee. Pathway analysis for genome-wide genetic variation data: Analytic principles, latest developments, and new opportunities[J]. Journal of Genetics and Genomics, 2021, 48(3): 173-183. doi: 10.1016/j.jgg.2021.01.007
    [7]Li Li, Hongyi Meng, Jianmin Zhang, Yang Liu, Qingjian Zou, Yi Gao, Huaqiang Yang, Liangxue Lai. A tunable, rapid, and precise drug control of protein expression by combining transcriptional and post-translational regulation systems[J]. Journal of Genetics and Genomics, 2020, 47(11): 705-712. doi: 10.1016/j.jgg.2020.07.009
    [8]Qi Zhao, Yu Sun, Dawei Wang, Hongwan Zhang, Kai Yu, Jian Zheng, Zhixiang Zuo. LncPipe: A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data[J]. Journal of Genetics and Genomics, 2018, 45(7): 399-401. doi: 10.1016/j.jgg.2018.06.005
    [9]Wanshan Ning, Shaofeng Lin, Jiaqi Zhou, Yaping Guo, Ying Zhang, Di Peng, Wankun Deng, Yu Xue. WocEA: The visualization of functional enrichment results in word clouds[J]. Journal of Genetics and Genomics, 2018, 45(7): 415-417. doi: 10.1016/j.jgg.2018.02.008
    [10]Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007
    [11]Md Mahmudul Islam, H.M. Adnan Hameed, Julius Mugweru, Chiranjibi Chhotaray, Changwei Wang, Yaoju Tan, Jianxiong Liu, Xinjie Li, Shouyong Tan, Iwao Ojima, Wing Wai Yew, Eric Nuermberger, Gyanu Lamichhane, Tianyu Zhang. Drug resistance mechanisms and novel drug targets for tuberculosis therapy[J]. Journal of Genetics and Genomics, 2017, 44(1): 21-37. doi: 10.1016/j.jgg.2016.10.002
    [12]Jharna Puppala, Siva Prasad Siddapuram, Jyothy Akka, Anjana Munshi. Genetics of Nonalcoholic Fatty Liver Disease: An Overview[J]. Journal of Genetics and Genomics, 2013, 40(1): 15-22. doi: 10.1016/j.jgg.2012.12.001
    [13]Mustafa Abdo Saif Dehwah, Aimin Xu, Qingyang Huang. MicroRNAs and Type 2 Diabetes/Obesity[J]. Journal of Genetics and Genomics, 2012, 39(1): 11-18. doi: 10.1016/j.jgg.2011.11.007
    [14]Young Geol Yoon, Michael Duane Koob. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker[J]. Journal of Genetics and Genomics, 2011, 38(4): 173-179. doi: 10.1016/j.jgg.2011.03.005
    [15]Mara Gladstone, Tin Tin Su. Chemical genetics and drug screening in Drosophila cancer models[J]. Journal of Genetics and Genomics, 2011, 38(10): 497-504. doi: 10.1016/j.jgg.2011.09.003
    [16]Tracy L Bergemann. Use of signal quality measurements to gain efficiency in the analysis of cDNA microarray data[J]. Journal of Genetics and Genomics, 2010, 37(4): 265-279. doi: 10.1016/S1673-8527(09)60045-X
    [17]Yabing Wang, Di Zhang, Yun Liu, Yifeng Yang, Teng Zhao, Jie Xu, Sheng Li, Zuofeng Zhang, Guoyin Feng, Lin He, He Xu. Association study of the single nucleotide polymorphisms in adiponectin-associated genes with type 2 diabetes in Han Chinese[J]. Journal of Genetics and Genomics, 2009, 36(7): 417-423. doi: 10.1016/S1673-8527(08)60131-9
    [18]Tianxin Sheng, Kangjuan Yang. Adiponectin and its association with insulin resistance and type 2 diabetes[J]. Journal of Genetics and Genomics, 2008, 35(6): 321-326. doi: 10.1016/S1673-8527(08)60047-8
    [19]Wei Sun, Hong Chang, Dejun Ji, Xinjun Liao, Lei Du, Shengxia Lu, Tsunoda Kenji. Analysis on Genetic Diversity and Isolation Mechanism by Distance of Different Ecological Type Sheep Breeds in Mongolia Sheep Group[J]. Journal of Genetics and Genomics, 2007, 34(11): 1001-1009. doi: 10.1016/S1673-8527(07)60113-1
    [20]Hekun Liu, Suyun Chen, Sizhong Zhang, Cuiying Xiao, Yan Ren, Haoming Tian, Xuefei Li. Adiponectin Gene Variation −4522C/T Is Associated with Type 2 Diabetic Obesity and Insulin Resistance in Chinese[J]. Journal of Genetics and Genomics, 2007, 34(10): 877-884. doi: 10.1016/S1673-8527(07)60099-X
  • Cited by

    Periodical cited type(10)

    1. Garana, B.B., Joly, J.H., Delfarah, A. et al. Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing. BMC Bioinformatics, 2023, 24(1): 215. doi:10.1186/s12859-023-05343-8
    2. Kropiwnicki, E., Evangelista, J.E., Stein, D.J. et al. Drugmonizome and Drugmonizome-ML: Integration and abstraction of small molecule attributes for drug enrichment analysis and machine learning. Database, 2021. doi:10.1093/database/baab017
    3. Ruiz-Meana, M., Boengler, K., Garcia-Dorado, D. et al. Ageing, sex, and cardioprotection. British Journal of Pharmacology, 2020, 177(23): 5270-5286. doi:10.1111/bph.14951
    4. Tong, Z., Zhou, Y., Wang, J. Identification and Functional Analysis of Long Non-coding RNAs in Autism Spectrum Disorders. Frontiers in Genetics, 2020. doi:10.3389/fgene.2020.00849
    5. Sabbatini, A.R., Kararigas, G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biology of Sex Differences, 2020, 11(1): 31. doi:10.1186/s13293-020-00306-7
    6. Sabbatini, A.R., Kararigas, G. Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF: JACC Review Topic of the Week. Journal of the American College of Cardiology, 2020, 75(9): 1074-1082. doi:10.1016/j.jacc.2019.12.049
    7. Rifaioglu, A.S., Nalbat, E., Atalay, V. et al. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chemical Science, 2020, 11(9): 2531-2557. doi:10.1039/c9sc03414e
    8. Altinbas, L., Bormann, N., Lehmann, D. et al. Assessment of bones deficient in fibrillin-1 microfibrils reveals pronounced sex differences. International Journal of Molecular Sciences, 2019, 20(23): 6059. doi:10.3390/ijms20236059
    9. He, Y., Zhou, Y., Ma, W. et al. An integrated transcriptomic analysis of autism spectrum disorder. Scientific Reports, 2019, 9(1): 11818. doi:10.1038/s41598-019-48160-x
    10. Mansoori, F., Rahgozar, M., Kavousi, K. FoPA: Identifying perturbed signaling pathways in clinical conditions using formal methods. BMC Bioinformatics, 2019, 20(1): 92. doi:10.1186/s12859-019-2635-6

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads (2) Cited by (10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return