5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 11
Nov.  2018
Turn off MathJax
Article Contents

The molecular and evolutionary basis of reproductive isolation in plants

doi: 10.1016/j.jgg.2018.10.004
More Information
  • Corresponding author: E-mail address: diana1983941@mail.hzau.edu.cn (Yidan Ouyang)
  • Received Date: 2018-07-25
  • Accepted Date: 2018-10-30
  • Rev Recd Date: 2018-09-19
  • Available Online: 2018-11-05
  • Publish Date: 2018-11-20
  • Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.
  • loading
  • [1]
    Alcazar, R., Garcia, A.V., Parker, J.E. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 334-339
    [2]
    Alcazar, R., von Reth, M., Bautor, J. et al. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature PLoS Genet., 10 (2014)
    [3]
    Bauer, H., Willert, J., Koschorz, B. et al. Nat. Genet., 37 (2005),pp. 969-973
    [4]
    Bauer, H., Veron, N., Willert, J. et al. Genes Dev., 21 (2007),pp. 143-147
    [5]
    Bikard, D., Patel, D., Le Mette, C. et al. Science, 323 (2009),pp. 623-626
    [6]
    Blevins, T., Wang, J., Pflieger, D. et al. Hybrid incompatibility caused by an epiallele Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 3702-3707
    [7]
    Bomblies, K. Doomed lovers: mechanisms of isolation and incompatibility in plants Annu. Rev. Plant Biol., 61 (2010),pp. 109-124
    [8]
    Bomblies, K., Lempe, J., Epple, P. et al. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants PLoS Biol., 5 (2007),p. e236
    [9]
    Brideau, N.J., Flores, H.A., Wang, J. et al. Science, 314 (2006),pp. 1292-1295
    [10]
    Chae, E., Bomblies, K., Kim, S.T. et al. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis Cell, 159 (2014),pp. 1341-1351
    [11]
    Chae, E., Tran, D.T., Weigel, D. Cooperation and conflict in the plant immune system PLoS Pathog., 12 (2016)
    [12]
    Chen, J., Ding, J., Ouyang, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 11436-11441
    [13]
    Chen, L., Zhao, Z., Liu, X. et al. Mol. Breeding, 27 (2011),pp. 247-258
    [14]
    Chen, C., Chen, H., Lin, Y.S. et al. A two-locus interaction causes interspecific hybrid weakness in rice Nat. Commun., 5 (2014),p. 3357
    [15]
    Chou, J.Y., Hung, Y.S., Lin, K.H. et al. Multiple molecular mechanisms cause reproductive isolation between three yeast species PLoS Biol., 8 (2010)
    [16]
    Dobzhansky, T.
    [17]
    Du, H., Ouyang, Y., Zhang, C. et al. New Phytol., 191 (2011),pp. 275-287
    [18]
    Durand, S., Bouche, N., Perez Strand, E. et al. Rapid establishment of genetic incompatibility through natural epigenetic variation Curr. Biol., 22 (2012),pp. 326-331
    [19]
    Fishman, L., Sweigart, A.L. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities Annu. Rev. Plant Biol., 69 (2018),pp. 707-731
    [20]
    Florez-Rueda, A.M., Paris, M., Schmidt, A. et al. Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds Mol. Biol. Evol., 33 (2016),pp. 2935-2946
    [21]
    Garner, A.G., Kenney, A.M., Fishman, L. et al. New Phytol., 211 (2016),pp. 319-331
    [22]
    Herrmann, B.G., Koschorz, B., Wertz, K. et al. Nature, 402 (1999),pp. 141-146
    [23]
    Ikehashi, H., Araki, H. Jpn. J. Breeding, 34 (1984),pp. 304-313
    [24]
    Jeuken, M.J., Zhang, N.W., McHale, L.K. et al. Plant Cell, 21 (2009),pp. 3368-3378
    [25]
    Kato, S., Kosaka, H., Hara, S. On the affinity of rice varieties as shown by fertility of hybrid plants Sci. Bull. Fac. Agric. Kyushu Univ., 3 (1928),pp. 132-147
    [26]
    Kirkbride, R.C., Yu, H.H., Nah, G. et al. Mol. Plant, 8 (2015),pp. 1766-1775
    [27]
    Koide, Y., Ogino, A., Yoshikawa, T. et al. Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. E1955-E1962
    [28]
    Kradolfer, D., Wolff, P., Jiang, H. et al. Dev. Cell, 26 (2013),pp. 525-535
    [29]
    Kruger, J., Thomas, C.M., Golstein, C. et al. Science, 296 (2002),pp. 744-747
    [30]
    Kubo, T., Takashi, T., Ashikari, M. et al. Mol. Plant, 9 (2016),pp. 221-232
    [31]
    Lafon-Placette, C., Kohler, C. Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers Mol. Ecol., 25 (2016),pp. 2620-2629
    [32]
    Lafon-Placette, C., Johannessen, I.M., Hornslien, K.S. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. E1027-E1035
    [33]
    Lee, H.Y., Chou, J.Y., Cheong, L. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species Cell, 135 (2008),pp. 1065-1073
    [34]
    Li, G., Li, X., Wang, Y. et al. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice Plant J., 92 (2017),pp. 349-362
    [35]
    Liu, H.Y., Xu, C.G., Zhang, Q. Sex. Plant Reprod., 17 (2004),pp. 55-62
    [36]
    Long, Y., Zhao, L., Niu, B. et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 18871-18876
    [37]
    Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
    [38]
    Mi, J.M., Li, G.W., Huang, J.Y. et al. Theor. Appl. Genet., 129 (2016),pp. 563-575
    [39]
    Mizuta, Y., Harushima, Y., Kurata, N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 20417-20422
    [40]
    Nguyen, G.N., Yamagata, Y., Shigematsu, Y. et al. Duplication and loss of function of genes encoding RNA polymerase III subunit C4 causes hybrid incompatibility in rice G3, 7 (2017),pp. 2565-2575
    [41]
    Niu, S., Yu, Y., Xu, C. et al. Sci. China C Life Sci., 44 (2014),pp. 815-821
    [42]
    Oneal, E., Willis, J.H., Franks, R.G. New Phytol., 210 (2016),pp. 1107-1120
    [43]
    Ouyang, Y. Chin. Sci. Bull., 61 (2016),pp. 3833-3841
    [44]
    Ouyang, Y., Zhang, Q. Understanding reproductive isolation based on the rice model Annu. Rev. Plant Biol., 64 (2013),pp. 111-135
    [45]
    Ouyang, Y., Chen, J., Ding, J. et al. Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice Chin. Sci. Bull., 54 (2009),pp. 2332-2341
    [46]
    Ouyang, Y., Liu, Y.G., Zhang, Q. Hybrid sterility in plant: stories from rice Curr. Opin. Plant Biol., 13 (2010),pp. 186-192
    [47]
    Ouyang, Y., Li, G., Mi, J. et al. Origination and establishment of a trigenic reproductive isolation system in rice Mol. Plant, 9 (2016),pp. 1542-1545
    [48]
    Rebernig, C.A., Lafon-Placette, C., Hatorangan, M.R. et al. PLoS Genet., 11 (2015)
    [49]
    Rieseberg, L.H., Blackman, B.K. Speciation genes in plants Ann. Bot., 106 (2010),pp. 439-455
    [50]
    Scannell, D.R., Byrne, K.P., Gordon, J.L. et al. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts Nature, 440 (2006),pp. 341-345
    [51]
    Seidel, H.S., Rockman, M.V., Kruglyak, L. Science, 319 (2008),pp. 589-594
    [52]
    Sekine, D., Ohnishi, T., Furuumi, H. et al. Dissection of two major components of the post-zygotic hybridization barrier in rice endosperm Plant J., 76 (2013),pp. 792-799
    [53]
    Shahid, M.Q., Chen, F., Li, H. et al. Crop Sci., 53 (2013),pp. 164-176
    [54]
    Shen, R., Wang, L., Liu, X. et al. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice Nat. Commun., 8 (2017),p. 1310
    [55]
    Sicard, A., Kappel, C., Josephs, E.B. et al. Nat. Commun., 6 (2015),p. 7960
    [56]
    Wan, J.
    [57]
    Wang, W., Mauleon, R., Hu, Z. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice Nature, 557 (2018),pp. 43-49
    [58]
    Wing, R.A., Purugganan, M.D., Zhang, Q. The rice genome revolution: from an ancient grain to Green Super Rice Nat. Rev. Genet., 19 (2018),pp. 505-517
    [59]
    Wolff, P., Jiang, H., Wang, G. et al. eLife, 4 (2015),p. e10074
    [60]
    Xie, Y., Niu, B., Long, Y. et al. J. Integr. Plant Biol., 59 (2017),pp. 669-679
    [61]
    Xie, Y., Xu, P., Huang, J. et al. Mol. Plant, 10 (2017),pp. 1137-1140
    [62]
    Xu, C.G. J. Huazhong Agric. Univ., 14 (1995),pp. 421-424
    [63]
    Yamagata, Y., Yamamoto, E., Aya, K. et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 1494-1499
    [64]
    Yamamoto, E., Takashi, T., Morinaka, Y. et al. Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice Mol. Genet. Genomics, 283 (2010),pp. 305-315
    [65]
    Yang, J., Zhao, X., Cheng, K. et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice Science, 337 (2012),pp. 1336-1340
    [66]
    Yu, Y., Zhao, Z., Shi, Y. et al. Genetics, 203 (2016),pp. 1439-1451
    [67]
    Yu, X., Zhao, Z., Zheng, X. et al. A selfish genetic element confers non-Mendelian inheritance in rice Science, 360 (2018),pp. 1130-1132
    [68]
    Zhu, Y., Yu, Y., Cheng, K. et al. Plant Physiol., 174 (2017),pp. 1683-1696
    [69]
    Zuellig, M.P., Sweigart, A.L. PLoS Genet., 14 (2018)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return