5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 1
Jan.  2019

Whole-brain patterns of the presynaptic inputs and axonal projections of BDNF neurons in the paraventricular nucleus

doi: 10.1016/j.jgg.2018.11.004
More Information
  • Corresponding author: E-mail address: shenwei@shanghaitech.edu.cn (Wei L. Shen); E-mail address: sd_yangjj@sumhs.edu.cn (Jiajun Yang)
  • Received Date: 2018-11-03
  • Accepted Date: 2018-11-25
  • Rev Recd Date: 2018-11-21
  • Available Online: 2019-01-26
  • Publish Date: 2019-01-20
  • Brain-derived neurotrophic factor (BDNF) plays a crucial role in human obesity. Yet, the neural circuitry supporting the BDNF-mediated control of energy homeostasis remains largely undefined. To map key regions that might provide inputs to or receive inputs from the paraventricular nucleus (PVN) BDNF neurons, a key type of cells in regulating feeding and thermogenesis, we used rabies virus-based transsynaptic labeling and adeno-associated virus based anterograde tracing techniques to reveal their whole-brain distributions. We found that dozens of brain regions provide dense inputs to or receive dense inputs from PVN BDNF neurons, including several known weight control regions and several novel regions that might be functionally important for the BDNF-mediated regulation of energy homeostasis. Interestingly, several regions show very dense reciprocal connections with PVN BDNF neurons, including the lateral septum, the preoptic area, the ventromedial hypothalamic nucleus, the paraventricular thalamic nucleus, the zona incerta, the lateral parabrachial nucleus, the subiculum, the raphe magnus nucleus, and the raphe pallidus nucleus. These strong anatomical connections might be indicative of important functional connections. Therefore, we provide an outline of potential neural circuitry mediated by PVN BDNF neurons, which might be helpful to resolve the complex obesity network.
  • These authors contributed equally.
  • [1]
    Altieri, M., Marini, F., Arban, R. et al. Brain Res., 1000 (2004),pp. 148-155
    [2]
    An, Juan J., Liao, G.-Y., Kinney, Clint E. et al. Discrete BDNF neurons in the paraventricular hypothalamus control feeding and energy expenditure Cell Metabol., 22 (2015),pp. 175-188
    [3]
    Cai, H., Haubensak, W., Anthony, T.E. et al. Central amygdala PKC-delta neurons mediate the influence of multiple anorexigenic signals Nat. Neurosci., 17 (2014),pp. 1240-1248
    [4]
    Chometton, S., Charriere, K., Bayer, L. et al. The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence Brain Struct. Funct., 222 (2017),pp. 2507-2525
    [5]
    Conte, W.L., Kamishina, H., Reep, R.L. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats Nat. Protoc., 4 (2009),pp. 1157-1166
    [6]
    Daigle, T.L., Madisen, L., Hage, T.A. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality Cell, 174 (2018),pp. 465-480
    [7]
    Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [8]
    Douglass, A.M., Kucukdereli, H., Ponserre, M. et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism Nat. Neurosci., 20 (2017),pp. 1384-1394
    [9]
    Godar, R., Dai, Y., Bainter, H. et al. Reduction of high-fat diet-induced obesity after chronic administration of brain-derived neurotrophic factor in the hypothalamic ventromedial nucleus Neuroscience, 194 (2011),pp. 36-52
    [10]
    Gray, J., Yeo, G.S.H., Cox, J.J. et al. Diabetes, 55 (2006),pp. 3366-3371
    [11]
    Huang, Y.H., Mogenson, G.J. Differential effects of incertal and hypothalamic lesions on food and water intake Exp. Neurol., 43 (1974),pp. 276-280
    [12]
    Jiang, Z., Rajamanickam, S., Justice, N.J. Local corticotropin-releasing factor signaling in the hypothalamic paraventricular nucleus J. Neurosci., 38 (2018),pp. 1874-1890
    [13]
    Kishi, T., Elmquist, J.K. Body weight is regulated by the brain: a link between feeding and emotion Mol. Psychiatr., 10 (2005),pp. 132-146
    [14]
    Krashes, M.J., Lowell, B.B., Garfield, A.S. Melanocortin-4 receptor-regulated energy homeostasis Nat. Neurosci., 19 (2016),pp. 206-219
    [15]
    Liao, G.Y., An, J.J., Gharami, K. et al. Nat. Med., 18 (2012),pp. 564-571
    [16]
    Liu, K., Kim, J., Kim, D.W. et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep Nature, 548 (2017),pp. 582-587
    [17]
    Majeed, N.H., Przewlocka, B., Wedzony, K. et al. Stimulation of food intake following opioid microinjection into the nucleus accumbens septi in rats Peptides, 7 (1986),pp. 711-716
    [18]
    Maynard, K.R., Hill, J.L., Calcaterra, N.E. et al. Functional role of BDNF production from unique promoters in aggression and serotonin signaling Neuropsychopharmacology, 41 (2016),pp. 1943-1955
    [19]
    Menard, J., Treit, D. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests Physiol. Behav., 60 (1996),pp. 845-853
    [20]
    Milner, K.L., Mogenson, G.J. Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats Brain Res., 452 (1988),pp. 273-285
    [21]
    Mizuno, S., Dinh, T.T.H., Kato, K. et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system Mamm. Genome, 25 (2014),pp. 327-334
    [22]
    Mou, Z., Hyde, T.M., Lipska, B.K. et al. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus Cell Rep., 13 (2015),pp. 1073-1080
    [23]
    Murer, M.G., Pazo, J.H. Circling behaviour induced by activation of GABAA receptors in the subthalamic nucleus Neuroreport, 4 (1993),pp. 1219-1222
    [24]
    Perier, C., Tremblay, L., Feger, J. et al. Behavioral consequences of bicuculline injection in the subthalamic nucleus and the zona incerta in rat J. Neurosci., 22 (2002),pp. 8711-8719
    [25]
    Power, B.D., Leamey, C.A., Mitrofanis, J. Evidence for a visual subsector within the zona incerta Vis. Neurosci., 18 (2001),pp. 179-186
    [26]
    Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
    [27]
    Roger, M., Cadusseau, J. Afferents to the zona incerta in the rat: a combined retrograde and anterograde study J. Comp. Neurol., 241 (1985),pp. 480-492
    [28]
    Sakata, K., Woo, N.H., Martinowich, K. et al. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 5942-5947
    [29]
    Scopinho, A.A., Resstel, L.B., Correa, F.M. Alpha(1)-Adrenoceptors in the lateral septal area modulate food intake behaviour in rats Br. J. Pharmacol., 155 (2008),pp. 752-756
    [30]
    Shaun, F., Morrison, K.N. Central neural pathways for thermoregulation Front. Biosci., 16 (2011),pp. 74-104
    [31]
    Speliotes, E.K., Willer, C.J., Berndt, S.I. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index Nat. Genet., 42 (2010),pp. 937-948
    [32]
    Stanley, S., Domingos, A.I., Kelly, L. et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia Cell Metabol., 18 (2013),pp. 596-607
    [33]
    Supko, D.E., Uretsky, N.J., Wallace, L.J. Activation of AMPA/kainic acid glutamate receptors in the zona incerta stimulates locomotor activity Brain Res., 564 (1991),pp. 159-163
    [34]
    Tait, D.S., Phillips, J.M., Blackwell, A.D. et al. Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat Neuroscience, 345 (2017),pp. 287-296
    [35]
    Tan, C.L., Cooke, E.K., Leib, D.E. et al. Warm-sensitive neurons that control body temperature Cell, 167 (2016),pp. 47-59
    [36]
    Tan, C.L., Knight, Z.A. Regulation of body temperature by the nervous system Neuron, 98 (2018),pp. 31-48
    [37]
    Tervo, D.G., Hwang, B.Y., Viswanathan, S. et al. A designer AAV variant permits efficient retrograde access to projection neurons Neuron, 92 (2016),pp. 372-382
    [38]
    Thorleifsson, G., Walters, G.B., Gudbjartsson, D.F. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity Nat. Genet., 41 (2009),pp. 18-24
    [39]
    Timmusk, T., Palm, K., Metsis, M. et al. Neuron, 10 (1993),pp. 475-489
    [40]
    Unger, T.J., Calderon, G.A., Bradley, L.C. et al. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity J. Neurosci., 27 (2007),pp. 14265-14274
    [41]
    Vong, L., Ye, C., Yang, Z. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons Neuron, 71 (2011),pp. 142-154
    [42]
    Walsh, L.L., Halaris, A.E., Grossman, L. et al. Some biochemical effects of zona incerta lesions that interfere with the regulation of water intake Pharmacol. Biochem. Behav., 7 (1977),pp. 351-356
    [43]
    Wang, C., Bomberg, E., Billington, C. et al. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake Am. J. Physiol. Regul. Integr. Comp. Physiol., 293 (2007),pp. R1003-R1012
    [44]
    Wang, C., Bomberg, E., Billington, C.J. et al. Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure Brain Res., 1336 (2010),pp. 66-77
    [45]
    Wang, C., Bomberg, E., Levine, A. et al. Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake Am. J. Physiol. Regul. Integr. Comp. Physiol., 293 (2007),pp. R1037-R1045
    [46]
    Wang, D., He, X., Zhao, Z. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons Front. Neuroanat., 9 (2015),p. 40
    [47]
    Waterson, M.J., Horvath, T.L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding Cell Metabol., 22 (2015),pp. 962-970
    [48]
    Wen, W.Q., Cho, Y.S., Zheng, W. et al. Meta-analysis identifies common variants associated with body mass index in east Asians Nat. Genet., 44 (2012),pp. 307-311
    [49]
    Wickersham, I.R., Lyon, D.C., Barnard, R.J. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons Neuron, 53 (2007),pp. 639-647
    [50]
    Xu, B., Goulding, E.H., Zang, K. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor Nat. Neurosci., 6 (2003),pp. 736-742
    [51]
    Xu, B., Xie, X. Neurotrophic factor control of satiety and body weight Nat. Rev. Neurosci., 17 (2016),pp. 282-292
    [52]
    Yadin, E., Thomas, E., Grishkat, H.L. et al. The role of the lateral septum in anxiolysis Physiol. Behav., 53 (1993),pp. 1077-1083
    [53]
    Yeo, G.S., Connie Hung, C.C., Rochford, J. et al. Nat. Neurosci., 7 (2004),pp. 1187-1189
    [54]
    Yu, S., Qualls-Creekmore, E., Rezai-Zadeh, K. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis J. Neurosci., 36 (2016),pp. 5034-5046
    [55]
    Zhang, Q., Li, H., Guo, F. Amygdala, an important regulator for food intake Front. Biol., 6 (2011),pp. 82-85
    [56]
    Zhang, X., van den Pol, A.N. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation Science, 356 (2017),pp. 853-859
    [57]
    Zhang, Z., Zhang, H., Wen, P. et al. Whole-Brain Mapping of the inputs and outputs of the medial part of the olfactory tubercle Front. Neural Circuits, 11 (2017),p. 52
    [58]
    Zhao, Z.D., Yang, W.Z., Gao, C. et al. A hypothalamic circuit that controls body temperature Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 2042-2047
  • Relative Articles

    [1]Ning Sun, Cheng Wang, Wenqi Lv, Xiaoni Gan, Liandong Yang, Shunping He, Chengchi Fang. 3D landscape reorganization in response to feeding preferences adaptation in the youngest split Gymnocypris fish[J]. Journal of Genetics and Genomics, 2023, 50(4): 289-292. doi: 10.1016/j.jgg.2022.09.003
    [2]Yue Wu, Jun Zhou, Yunfan Yang. Peripheral and central control of obesity by primary cilia[J]. Journal of Genetics and Genomics, 2023, 50(5): 295-304. doi: 10.1016/j.jgg.2022.12.006
    [3]Jacques Togo, Yanrui Yang, Sumei Hu, Jia-Jia Liu, John R. Speakman. Effect of disrupted episodic memory on food consumption: no impact of neuronal loss of endophilin A1 on food intake and energy balance[J]. Journal of Genetics and Genomics, 2022, 49(4): 329-337. doi: 10.1016/j.jgg.2022.01.005
    [4]Wei Zhang, Yan Li, Sijie Chen, Cuizhen Zhang, Lili Chen, Gang Peng. nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation[J]. Journal of Genetics and Genomics, 2022, 49(3): 217-229. doi: 10.1016/j.jgg.2021.08.019
    [5]Lin Zhu, Xiaoyan Yang, Juyi Li, Xiong Jia, Xiangli Bai, Ying Zhao, Wenzhuo Cheng, Meng Shu, Yan Zhu, Si Jin. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system[J]. Journal of Genetics and Genomics, 2021, 48(2): 134-146. doi: 10.1016/j.jgg.2021.01.008
    [6]Chang Ye, Zhuoxin Chen, Zhan Liu, Feng Wang, Xionglei He. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish[J]. Journal of Genetics and Genomics, 2020, 47(2): 85-91. doi: 10.1016/j.jgg.2019.11.012
    [7]Xiaona Zheng, Guangyu Zhang, Yandong Gong, Xiaowei Ning, Zhijie Bai, Jian He, Fan Zhou, Yanli Ni, Yu Lan, Bing Liu. Embryonic lineage tracing with Procr-CreER marks balanced hematopoietic stem cell fate during entire mouse lifespan[J]. Journal of Genetics and Genomics, 2019, 46(10): 489-498. doi: 10.1016/j.jgg.2019.10.005
    [8]Josue M. Regalado, McKenna B. Cortez, Jeremy Grubbs, Jared A. Link, Alexander van der Linden, Yong Zhang. Increased food intake after starvation enhances sleep in Drosophila melanogaster[J]. Journal of Genetics and Genomics, 2017, 44(6): 319-326. doi: 10.1016/j.jgg.2017.05.006
    [9]Bin Qiu, Richard L. Bell, Yong Cao, Lingling Zhang, Robert B. Stewart, Tamara Graves, Lawrence Lumeng, Weidong Yong, Tiebing Liang. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight[J]. Journal of Genetics and Genomics, 2016, 43(7): 421-430. doi: 10.1016/j.jgg.2016.04.010
    [10]Jharna Puppala, Siva Prasad Siddapuram, Jyothy Akka, Anjana Munshi. Genetics of Nonalcoholic Fatty Liver Disease: An Overview[J]. Journal of Genetics and Genomics, 2013, 40(1): 15-22. doi: 10.1016/j.jgg.2012.12.001
    [11]Yi Ding, Zhi-Rong Guo, Ming Wu, Qiu Chen, Hao Yu, Wen-Shu Luo. Gene–Gene Interaction between PPARδ and PPARγ Is Associated with Abdominal Obesity in a Chinese Population[J]. Journal of Genetics and Genomics, 2012, 39(12): 625-631. doi: 10.1016/j.jgg.2012.08.005
    [12]Mustafa Abdo Saif Dehwah, Aimin Xu, Qingyang Huang. MicroRNAs and Type 2 Diabetes/Obesity[J]. Journal of Genetics and Genomics, 2012, 39(1): 11-18. doi: 10.1016/j.jgg.2011.11.007
    [13]Yongguo Yu, Haitao Zhu, David T. Miller, James F. Gusella, Orah S. Platt, Bai-Lin Wu, Yiping Shen. Age- and gender-dependent obesity in individuals with 16p11.2 deletion[J]. Journal of Genetics and Genomics, 2011, 38(9): 403-409. doi: 10.1016/j.jgg.2011.08.003
    [14]Hekun Liu, Suyun Chen, Sizhong Zhang, Cuiying Xiao, Yan Ren, Haoming Tian, Xuefei Li. Adiponectin Gene Variation −4522C/T Is Associated with Type 2 Diabetic Obesity and Insulin Resistance in Chinese[J]. Journal of Genetics and Genomics, 2007, 34(10): 877-884. doi: 10.1016/S1673-8527(07)60099-X
    [15]Hongyi Li, Shu Meng, Zheng Chen, Haifei Li, Minlian Du, Huamei Ma, Haiyun Wei, Honglei Duan, Hui Zheng, Qing Wenren, Xinming Song. Molecular Genetic Diagnostics of Prader-Willi Syndrome: a Validation of Linkage Analysis for the Chinese Population[J]. Journal of Genetics and Genomics, 2007, 34(10): 885-891. doi: 10.1016/S1673-8527(07)60100-3
  • Cited by

    Periodical cited type(21)

    1. Ren, S., Wang, S., Lv, S. et al. The nociceptive inputs of the paraventricular hypothalamic nucleus in formalin stimulated mice. Neuroscience Letters, 2024. doi:10.1016/j.neulet.2024.137948
    2. Harvey, T., Rios, M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules, 2024, 14(4): 424. doi:10.3390/biom14040424
    3. Ma, L., Liu, Q., Liu, X. et al. Paraventricular Hypothalamic Nucleus Upregulates Intraocular Pressure Via Glutamatergic Neurons. Investigative Ophthalmology and Visual Science, 2023, 64(12): 43. doi:10.1167/iovs.64.12.43
    4. Zhou, Q., Fu, X., Xu, J. et al. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron, 2023, 111(3): 387-404.e8. doi:10.1016/j.neuron.2022.11.008
    5. Rodriguez, L.A., Kim, S.-H., Page, S.C. et al. The basolateral amygdala to lateral septum circuit is critical for regulating social novelty in mice. Neuropsychopharmacology, 2023, 48(3): 529-539. doi:10.1038/s41386-022-01487-y
    6. Meng, J.-J., Shen, J.-W., Li, G. et al. Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell, 2023, 186(2): 398-412.e17. doi:10.1016/j.cell.2022.12.024
    7. Sedwick, V.M., Autry, A.E. Anatomical and molecular features of the amygdalohippocampal transition area and its role in social and emotional behavior processes. Neuroscience and Biobehavioral Reviews, 2022. doi:10.1016/j.neubiorev.2022.104893
    8. Zhou, Q., Liu, C., Chen, T. et al. Cooling-activated dorsomedial hypothalamic BDNF neurons control cold defense in mice. Journal of Neurochemistry, 2022, 163(3): 220-232. doi:10.1111/jnc.15666
    9. Zeng, W., Yang, F., Shen, W.L. et al. Interactions between central nervous system and peripheral metabolic organs. Science China Life Sciences, 2022, 65(10): 1929-1958. doi:10.1007/s11427-021-2103-5
    10. Chen, J., Li, C., Lu, Z. et al. Optimal Timing of a Commonly-Used Rabies Virus for Neural Recording and Manipulation. Neuroscience Bulletin, 2022, 38(5): 548-552. doi:10.1007/s12264-022-00819-8
    11. Watts, A.G., Kanoski, S.E., Sanchez-Watts, G. et al. THE PHYSIOLOGICAL CONTROL OF EATING: SIGNALS, NEURONS, AND NETWORKS. Physiological Reviews, 2022, 102(2): 689-813. doi:10.1152/physrev.00028.2020
    12. Liu, Y., Rao, B., Li, S. et al. Distinct Hypothalamic Paraventricular Nucleus Inputs to the Cingulate Cortex and Paraventricular Thalamic Nucleus Modulate Anxiety and Arousal. Frontiers in Pharmacology, 2022. doi:10.3389/fphar.2022.814623
    13. Raharjo, S., Rejeki, P.S., Kurniawan, A.W. et al. Pattern of serum brain-derived neurotrophic factor levels after acute interval exercise versus acute continuous exercise in obese adolescent females. Comparative Exercise Physiology, 2022, 18(5): 393-402. doi:10.3920/CEP220017
    14. Bohler, M.W., Chowdhury, V.S., Cline, M.A. et al. Heat stress responses in birds: A review of the neural components. Biology, 2021, 10(11): 1095. doi:10.3390/biology10111095
    15. Yong, Y., Cakir, I., Pan, P.L. et al. Endogenous cannabinoids are required for MC4R-mediated control of energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42): e2015990118. doi:10.1073/pnas.2015990118
    16. Niu, J., Tong, J., Blevins, J.E. Oxytocin as an Anti-obesity Treatment. Frontiers in Neuroscience, 2021. doi:10.3389/fnins.2021.743546
    17. Wei, H.-H., Yuan, X.-S., Chen, Z.-K. et al. Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice. Experimental Neurology, 2021. doi:10.1016/j.expneurol.2021.113784
    18. Cao, L., Ali, S., Queen, N.J. Hypothalamic gene transfer of BDNF promotes healthy aging. Vitamins and Hormones, 2021. doi:10.1016/bs.vh.2020.12.003
    19. Wang, P., Loh, K.H., Wu, M. et al. A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue. Nature, 2020, 583(7818): 839-844. doi:10.1038/s41586-020-2527-y
    20. Luo, T., Tian, H., Song, H. et al. Possible Involvement of Tissue Plasminogen Activator/Brain-Derived Neurotrophic Factor Pathway in Anti-Depressant Effects of Electroacupuncture in Chronic Unpredictable Mild Stress-Induced Depression in Rats. Frontiers in Psychiatry, 2020. doi:10.3389/fpsyt.2020.00063
    21. Sharma, A., Muresanu, D.F., Ozkizilcik, A. et al. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. Progress in Brain Research, 2019. doi:10.1016/bs.pbr.2019.03.002

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.0 %FULLTEXT: 21.0 %META: 78.3 %META: 78.3 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.7 %其他: 0.7 %China: 51.7 %China: 51.7 %India: 2.1 %India: 2.1 %Other: 2.1 %Other: 2.1 %Russian Federation: 9.8 %Russian Federation: 9.8 %United States: 33.6 %United States: 33.6 %其他ChinaIndiaOtherRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads (1) Cited by (24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return