[1] |
Butler, T., Paul, J., Europe-Finner, N. et al. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility Am. J. Physiol. Cell Physiol., 304 (2013),pp. C485-C504
|
[2] |
Chen, C.P., Chen, X., Qiao, Y.N. et al. J. Physiol., 593 (2015),pp. 681-700
|
[3] |
Collins, S., Martin, T.L., Surwit, R.S. et al. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics Physiol. Behav., 81 (2004),pp. 243-248
|
[4] |
Crowley, S.D., Gurley, S.B., Oliverio, M.I. et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system J. Clin. Investig., 115 (2005),pp. 1092-1099
|
[5] |
Das Evcimen, N., King, G.L. The role of protein kinase C activation and the vascular complications of diabetes Pharmacol. Res., 55 (2007),pp. 498-510
|
[6] |
Dimopoulos, G.J., Semba, S., Kitazawa, K. et al. Circ. Res., 100 (2007),pp. 121-129
|
[7] |
Dinh Cat, A.N., Friederich-Persson, M., White, A. et al. Adipocytes, aldosterone and obesity-related hypertension J. Mol. Endocrinol., 57 (2016),pp. F7-F21
|
[8] |
Eto, M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors J. Biol. Chem., 284 (2009),pp. 35273-35277
|
[9] |
Eto, M., Brautigan, D.L. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling IUBMB Life, 64 (2012),pp. 732-739
|
[10] |
Eto, M., Kitazawa, T., Matsuzawa, F. et al. Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor Structure, 15 (2007),pp. 1591-1602
|
[11] |
Eto, M., Ohmori, T., Suzuki, M. et al. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization J. Biochem., 118 (1995),pp. 1104-1107
|
[12] |
Grassie, M.E., Moffat, L.D., Walsh, M.P. et al. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ Arch. Biochem. Biophys., 510 (2011),pp. 147-159
|
[13] |
Hall, J.E. The kidney, hypertension, and obesity Hypertension, 41 (2003),pp. 625-633
|
[14] |
Hall, J.E., Hildebrandt, D.A., Kuo, J. Obesity hypertension: role of leptin and sympathetic nervous system Am. J. Hypertens., 14 (2001),pp. 103S-115S
|
[15] |
He, W.Q., Peng, Y.J., Zhang, W.C. et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice Gastroenterology, 135 (2008),pp. 610-620
|
[16] |
He, W.Q., Qiao, Y.N., Peng, Y.J. et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1 Gastroenterology, 144 (2013),pp. 1456-1465
|
[17] |
He, W.Q., Qiao, Y.N., Zhang, C.H. et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension Am. J. Physiol. Heart Circ. Physiol., 301 (2011),pp. H584-H591
|
[18] |
Himpens, B., Kitazawa, T., Somlyo, A.P. Pflügers Archiv, 417 (1990),pp. 21-28
|
[19] |
Kamm, K.E., Stull, J.T. The funtion of myosin and myosin light chain kinase phosphorylation in smooth muscle Annu. Rev. Pharmacol. Toxicol., 25 (1985),pp. 593-620
|
[20] |
Kawarazaki, W., Fujita, T. The role of aldosterone in obesity-related hypertension Am. J. Hypertens., 29 (2016),pp. 415-423
|
[21] |
Kim, J.I. High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17 Korean J. Physiol. Pharmacol., 21 (2017),pp. 99-106
|
[22] |
King, R.J., Ajjan, R.A. Vascular risk in obesity: facts, misconceptions and the unknown Diabetes Vasc. Dis. Res., 14 (2016),pp. 2-13
|
[23] |
Kitazawa, T. Biochem. Biophys. Res. Commun., 401 (2010),pp. 75-78
|
[24] |
Kitazawa, T., Eto, M., Woodsome, T.P. et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility J. Biol. Chem., 275 (2000),pp. 9897-9900
|
[25] |
Kitazawa, T., Gaylinn, B.D., Denney, G.H. et al. J. Biol. Chem., 266 (1991),pp. 1708-1715
|
[26] |
Kitazawa, T., Masuo, M., Somlyo, A.P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 9307-9310
|
[27] |
Landsberg, L., Aronne, L.J., Beilin, L.J. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment. A position paper of the Obesity Society and the American Society of Hypertension J. Clin. Hypertens., 15 (2013),pp. 14-33
|
[28] |
Matsumura, F., Hartshorne, D.J. Myosin phosphatase target subunit: many roles in cell function Biochem. Biophys. Res. Commun., 369 (2008),pp. 149-156
|
[29] |
Mendelsohn, M.E. In hypertension, the kidney is not always the heart of the matter J. Clin. Investig., 115 (2005),pp. 840-844
|
[30] |
Montani, J.P., Antic, V., Yang, Z. et al. Pathways from obesity to hypertension: from the perspective of a vicious triangle Int. J. Obes., 26 (2002),pp. S28-S38
|
[31] |
Must, A., Spadano, J., Coakley, E.H. et al. The disease burden associated with overweight and obesity J. Am. Med. Assoc., 282 (1999),pp. 1523-1529
|
[32] |
Pang, H., Guo, Z., Su, W. et al. RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells Am. J. Physiol. Cell Physiol., 289 (2005),pp. C352-C360
|
[33] |
Qiao, Y.N., He, W.Q., Chen, C.P. et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure J. Biol. Chem., 289 (2014),pp. 22512-22523
|
[34] |
Rahmouni, K., Correia, M.L.G., Haynes, W.G. et al. Obesity-associated hypertension: new insights into mechanisms Hypertension, 45 (2005),pp. 9-14
|
[35] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[36] |
Senba, S., Eto, M., Yazawa, M. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle J. Biochem., 125 (1999),pp. 354-362
|
[37] |
Somlyo, A.P., Somlyo, A.V. Signal transduction and regulation in smooth muscle Nature, 372 (1994),pp. 231-236
|
[38] |
Somlyo, A.P., Somlyo, A.V. Physiol. Rev., 83 (2003),pp. 1325-1358
|
[39] |
Taylor, D.A., Stull, J.T. Calcium dependence of myosin light chain phosphorylation in smooth muscle cells J. Biol. Chem., 263 (1988),pp. 14456-14462
|
[40] |
Tsai, M.H., Chang, A.N., Huang, J. et al. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle J. Physiol., 592 (2014),pp. 3031-3051
|
[41] |
Wang, C.Y., Liao, J.K. A mouse model of diet-induced obesity and insulin resistance Methods Mol. Biol., 821 (2012),pp. 421-433
|
[42] |
Whitesall, S.E., Hoff, J.B., Vollmer, A.P. et al. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods Am. J. Physiol. Heart Circ. Physiol., 286 (2004),pp. H2408-H2415
|
[43] |
Woodsome, T.P., Eto, M., Everett, A. et al. J. Physiol., 535 (2001),pp. 553-564
|
[44] |
Xie, Z.W., Su, W., Guo, Z.H. et al. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells Cardiovasc. Res., 69 (2006),pp. 491-501
|
[45] |
Yang, Q.H., Fujii, W., Kaji, N. et al. The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice FASEB J., 32 (2018),pp. 2095-2109
|
[1] | Hongwei Jing, Xiaolu Yang, Ryan J. Emenecker, Jian Feng, Jian Zhang, Marcelo Rodrigues Alves de Figueiredo, Patarasuda Chaisupa, R. Clay Wright, Alex S. Holehouse, Lucia C. Strader, Jianru Zuo. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling[J]. Journal of Genetics and Genomics, 2023, 50(7): 473-485. doi: 10.1016/j.jgg.2023.05.001 |
[2] | Yue Wu, Jun Zhou, Yunfan Yang. Peripheral and central control of obesity by primary cilia[J]. Journal of Genetics and Genomics, 2023, 50(5): 295-304. doi: 10.1016/j.jgg.2022.12.006 |
[3] | Yun Hu, Zhi-Ying Liu, Sha-Sha Li, An-Qi Li, G Gregory Neely, Qiao-Ping Wang. Corrigendum to “AMPK controls sucrose taste sensitization in Drosophila” [Journal of Genetics and Genomics (2023) 50, 50–53][J]. Journal of Genetics and Genomics, 2023, 50(2): 139-139. doi: 10.1016/j.jgg.2023.01.005 |
[4] | Yun Hu, Zhi-Ying Liu, Sha-Sha Li, An-Qi Li, Qiao-Ping Wang. AMPK controls sucrose taste sensitization in Drosophila[J]. Journal of Genetics and Genomics, 2023, 50(1): 50-53. doi: 10.1016/j.jgg.2022.04.015 |
[5] | Tingting Zhu, Linqiang Zhang, Chengbin Li, Xiaoqiong Tan, Jing Liu, Huiqin Li, Qijing Fan, Zhiguo Zhang, Mingfeng Zhan, Lin Fu, Jinbo Luo, Jiawei Geng, Yingjie Wu, Xiaoju Zou, Bin Liang. The S100 calcium binding protein A11 promotes liver fibrogenesis by targeting TGF-β signaling[J]. Journal of Genetics and Genomics, 2022, 49(4): 338-349. doi: 10.1016/j.jgg.2022.02.013 |
[6] | Shitou Xia, Xueru Liu, Yuelin Zhang. Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity[J]. Journal of Genetics and Genomics, 2021, 48(6): 429-432. doi: 10.1016/j.jgg.2021.06.003 |
[7] | Anne-Marie Madore, Lucile Pain, Anne-Marie Boucher-Lafleur, Andréanne Morin, Jolyane Meloche, Marie-Michelle Simon, Bing Ge, Tony Kwan, Warren A. Cheung, Tomi Pastinen, Catherine Laprise. Asthma-associated polymorphisms in 17q12-21 locus modulate methylation and gene expression of GSDMA in naïve CD4+ T cells[J]. Journal of Genetics and Genomics, 2020, 47(3): 171-174. doi: 10.1016/j.jgg.2020.03.002 |
[8] | Bing Song, Chunyu Liu, Yang Gao, Jordan Lee Marley, Weiyu Li, Xiaoqin Ni, Wangjie Liu, Yujie Chen, Jiajia Wang, Chao Wang, Ping Zhou, Zhaolian Wei, Xiaojin He, Feng Zhang, Yunxia Cao. Novel compound heterozygous variants in dynein axonemal heavy chain 17 cause asthenoteratospermia with sperm flagellar defects[J]. Journal of Genetics and Genomics, 2020, 47(11): 713-717. doi: 10.1016/j.jgg.2020.07.004 |
[9] | Marianne Venter, Leone Malan, Etresia van Dyk, Joanna L. Elson, Francois H. van der Westhuizen. Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study[J]. Journal of Genetics and Genomics, 2017, 44(3): 139-149. doi: 10.1016/j.jgg.2016.12.003 |
[10] | Hwa Jin Jung, Yousin Suh. Circulating miRNAs in Ageing and Ageing-Related Diseases[J]. Journal of Genetics and Genomics, 2014, 41(9): 465-472. doi: 10.1016/j.jgg.2014.07.003 |
[11] | Dimitry A. Chistiakov, Lyudmila M. Kuzenkova, Kirill V. Savost'anov, Anait K. Gevorkyan, Alexander A. Pushkov, Alexey G. Nikitin, Nato D. Vashakmadze, Natalia V. Zhurkova, Tatiana V. Podkletnova, Leila S. Namazova-Baranova, Alexander A. Baranov. Genetic Analysis of 17 Children with Hunter Syndrome: Identification and Functional Characterization of Four Novel Mutations in the Iduronate-2-Sulfatase Gene[J]. Journal of Genetics and Genomics, 2014, 41(4): 197-203. doi: 10.1016/j.jgg.2014.01.007 |
[12] | Yilong Dong, Yun Ding, Yina Cun, Chunjie Xiao. Association of Renin Binding Protein (RnBP) Gene Polymorphisms with Essential Hypertension in the Hani Minority of Southwestern China[J]. Journal of Genetics and Genomics, 2013, 40(8): 433-436. doi: 10.1016/j.jgg.2013.06.002 |
[13] | Yi Ding, Zhi-Rong Guo, Ming Wu, Qiu Chen, Hao Yu, Wen-Shu Luo. Gene–Gene Interaction between PPARδ and PPARγ Is Associated with Abdominal Obesity in a Chinese Population[J]. Journal of Genetics and Genomics, 2012, 39(12): 625-631. doi: 10.1016/j.jgg.2012.08.005 |
[14] | Mustafa Abdo Saif Dehwah, Aimin Xu, Qingyang Huang. MicroRNAs and Type 2 Diabetes/Obesity[J]. Journal of Genetics and Genomics, 2012, 39(1): 11-18. doi: 10.1016/j.jgg.2011.11.007 |
[15] | Zhen Pan, Yang Zhao, Yuan Zheng, Juntao Liu, Xiangning Jiang, Yan Guo. A High-Throughput Method for Screening Arabidopsis Mutants with Disordered Abiotic Stress-Induced Calcium Signal[J]. Journal of Genetics and Genomics, 2012, 39(5): 225-235. doi: 10.1016/j.jgg.2012.04.002 |
[16] | Yongguo Yu, Haitao Zhu, David T. Miller, James F. Gusella, Orah S. Platt, Bai-Lin Wu, Yiping Shen. Age- and gender-dependent obesity in individuals with 16p11.2 deletion[J]. Journal of Genetics and Genomics, 2011, 38(9): 403-409. doi: 10.1016/j.jgg.2011.08.003 |
[17] | Yina Cun, Jin Li, Wenru Tang, Xiaozhi Sheng, Haijing Yu, Bingrong Zheng, Chunjie Xiao. Association of WNK1 exon 1 polymorphisms with essential hypertension in Hani and Yi minorities of China[J]. Journal of Genetics and Genomics, 2011, 38(4): 165-171. doi: 10.1016/j.jgg.2011.03.004 |
[18] | Xiuying Liu, GuanZheng Luo, Xiujuan Bai, Xiu-Jie Wang. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes[J]. Journal of Genetics and Genomics, 2009, 36(10): 591-601. doi: 10.1016/S1673-8527(08)60151-4 |
[19] | Yunfei Zhang, Guangyu Cao, Li-Jia Qu, Hongya Gu. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15[J]. Journal of Genetics and Genomics, 2009, 36(2): 99-107. doi: 10.1016/S1673-8527(08)60096-X |
[20] | Hekun Liu, Suyun Chen, Sizhong Zhang, Cuiying Xiao, Yan Ren, Haoming Tian, Xuefei Li. Adiponectin Gene Variation −4522C/T Is Associated with Type 2 Diabetic Obesity and Insulin Resistance in Chinese[J]. Journal of Genetics and Genomics, 2007, 34(10): 877-884. doi: 10.1016/S1673-8527(07)60099-X |
1. | Wang, Y., Jiang, Z.-H., Zhou, Y.-W. et al. Gallbladder dysfunction caused by MYPT1 ablation triggers cholestasis-induced hepatic fibrosis in mice. Hepatology Communications, 2024, 8(7): e0473. doi:10.1097/HC9.0000000000000473 | |
2. | Dong, Y., Wang, J., Yang, C. et al. Phosphorylated CPI-17 and MLC2 as Biomarkers of Coronary Artery Spasm–Induced Sudden Cardiac Death. International Journal of Molecular Sciences, 2024, 25(5): 2941. doi:10.3390/ijms25052941 | |
3. | Shan, Y., Wang, W.-Y., Zhang, H. et al. Role and mechanism of PKCs in midazolam-induced relaxation of aortic smooth muscle in spontaneously hypertensive rats | [蛋白激酶 Cs 在咪达唑仑舒张自发性高血压大鼠 主动脉平滑肌中的作用和机制]. Chinese Pharmacological Bulletin, 2023, 39(6): 1054-1060. doi:10.12360/CPB202209048 | |
4. | Gao, S., Fang, G., Zhang, Y. et al. Generation of Mlk3 KO mice by CRISPR/Cas9 and its effect on blood pressure | [利用CRISPR/Cas9系统敲除小鼠Mlk3基因探讨其对血压的影响]. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2023, 39(4): 1644-1654. doi:10.13345/j.cjb.221022 | |
5. | Yoon, H.-J., Kang, D.H., Jin, F. et al. The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation. Biomolecules and Therapeutics, 2023, 31(2): 193-199. doi:10.4062/biomolther.2022.087 | |
6. | Zhao, W., Sun, J., Yao, L.-Y. et al. MYPT1 reduction is a pathogenic factor of erectile dysfunction. Communications Biology, 2022, 5(1): 744. doi:10.1038/s42003-022-03716-y | |
7. | Lin, Z., Lin, X., Zhao, X. et al. Coronary Artery Spasm: Risk Factors, Pathophysiological Mechanisms and Novel Diagnostic Approaches. Reviews in Cardiovascular Medicine, 2022, 23(5): 175. doi:10.31083/j.rcm2305175 | |
8. | Yan, X., Chen, C., Wang, D. et al. Mechanism of progesterone promoting uterine smooth muscle contraction through RhoA/ROCK signaling pathway | [孕酮通过 RhoA/ROCK信号通路促进子宫平滑肌收缩的机制研究]. Journal of Army Medical University, 2022, 44(12): 1199-1206. doi:10.16016/j.2097-0927.202111235 | |
9. | Ito, M., Okamoto, R., Ito, H. et al. Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertension Research, 2022, 45(1): 40-52. doi:10.1038/s41440-021-00733-y | |
10. | Kitazawa, T., Matsui, T., Katsuki, S. et al. A temporal Ca2 þ desensitization of myosin light chain kinase in phasic smooth muscles induced by CaMKKb/PP2A pathways. American Journal of Physiology - Cell Physiology, 2021, 321(3): C549-C558. doi:10.1152/AJPCELL.00136.2021 | |
11. | Ueda, S., Hosoda, M., Yoshino, K.-I. et al. Gene expression analysis provides new insights into the mechanism of intramuscular fat formation in japanese black cattle. Genes, 2021, 12(8): 1107. doi:10.3390/genes12081107 | |
12. | Yang, Q., Hori, M. Characterization of contractile machinery of vascular smooth muscles in hypertension. Life, 2021, 11(7): 702. doi:10.3390/life11070702 | |
13. | Wei, X., Lan, T., Zhou, Y. et al. Mechanism of α1-Adrenergic Receptor-Induced Increased Contraction of Rat Mesenteric Artery in Aging Hypertension Rats. Gerontology, 2021, 67(3): 323-337. doi:10.1159/000511911 | |
14. | Sun, J., Qiao, Y.-N., Tao, T. et al. Distinct Roles of Smooth Muscle and Non-muscle Myosin Light Chain-Mediated Smooth Muscle Contraction. Frontiers in Physiology, 2020. doi:10.3389/fphys.2020.593966 | |
15. | Wei, L., Zheng, Y.-Y., Sun, J. et al. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism. Journal of Biological Chemistry, 2020, 295(47): 15988-16001. doi:10.1074/jbc.RA120.015020 | |
16. | Álvarez-Santos, M.D., Álvarez-González, M., Estrada-Soto, S. et al. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Frontiers in Physiology, 2020. doi:10.3389/fphys.2020.00701 | |
17. | Wu, J., Nakashima, S., Shigyo, M. et al. Antihypertensive constituents in Sanoshashinto. Journal of Natural Medicines, 2020, 74(2): 421-433. doi:10.1007/s11418-019-01382-9 |