5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 7
Jul.  2019

Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes

doi: 10.1016/j.jgg.2019.07.002
More Information
  • Corresponding author: E-mail address: congpq@mail.sysu.edu.cn (Peiqing Cong); E-mail address: hjunjiu@mail.sysu.edu.cn (Junjiu Huang)
  • Received Date: 2019-04-04
  • Accepted Date: 2019-07-04
  • Rev Recd Date: 2019-06-16
  • Available Online: 2019-07-20
  • Publish Date: 2019-07-20
  • Genetically modified pigs represent a great promise for generating models of human diseases and producing new breeds. Generation of genetically edited pigs using somatic cell nuclear transfer (SCNT) or zygote cytoplasmic microinjection is a tedious process due to the low developmental rate or mosaicism of the founder (F0). Herein, we developed a method termed germinal vesicle oocyte gene editing (GVGE) to produce non-mosaic porcine embryos by editing maternal alleles during the GV to MⅡ transition. Injection of Cas9 mRNA and X-linked Dmd gene-specific gRNA into GV oocytes did not affect their developmental potential. The MⅡ oocytes edited during in vitro maturation (IVM) could develop into blastocysts after parthenogenetic activation (PA) or in vitro fertilization (IVF). Genotyping results indicated that the maternal gene X-linked Dmd could be efficiently edited during oocyte maturation. Up to 81.3% of the edited IVF embryos were non-mosaic Dmd gene mutant embryos. In conclusion, GVGE might be a valuable method for the generation of non-mosaic maternal allele edited F0 embryos in a short simple step.
  • These authors contributed equally to this work.
  • [1]
    Aslan Y, Tadjuidje E, Zorn AM, Cha SW. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development. 2017; 144: 2852-2858.
    [2]
    Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development.2016; 143: 2025-2037.
    [3]
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121): 819-823.
    [4]
    Fan N, Lai L. Genetically modified pig models for human diseases. J. Genet. Genomics. 2013; 40: 67-73.
    [5]
    Farboud B, Jarvis E, Roth TL, Shin J, Corn JE, Marson A, Meyer BJ, Patel NH, Hochstrasser ML. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms. J. Vis. Exp. 2018; (135). doi: 10.3791/57350. Page number?
    [6]
    Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC. The production of pig preimplantation embryos in vitro: current progress and future prospects. Reprod. Biol. 2018; 18: 203-211.
    [7]
    Guo X, Li XJ. Targeted genome editing in primate embryos. Cell Res. 2015; 25: 767-768.
    [8]
    Hilton D. Muscle biopsy: A practical approach. Neuropath. Appl. Neurobiol. 2007; 33: 481-482.
    [9]
    Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell.1987; 51: 919-928.
    [10]
    Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 16.
    [11]
    Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014; 24: 1012-1019.
    [12]
    Kouranova E, Forbes K, Zhao G, Warren J, Bartels A, Wu Y, Cui X. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Hum Gene Ther. 2016; 27: 464-475.
    [13]
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015; 6(5): 363-372.
    [14]
    Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol. 2016; 214(5): 529-537.
    [15]
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9.Science. 2013; 339(6121): 823-826.
    [16]
    Martinez CA, Martinez EA, Gil MA. Importance of oil overlay for production of porcine embryos in vitro. Reprod. Domest. Anim. 2018; 53: 281-286.
    [17]
    Miyamoto K, Suzuki KT, Suzuki M, Sakane Y, Sakuma T, Herberg S, Simeone A, Simpson D, Jullien J, Yamamoto T, Gurdon JB. The expression of TALEN before fertilization provides a rapid knock-out phenotype in Xenopuslaevis founder embryos. PLoS One. 2015; 10: e0142946.
    [18]
    Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988; 2: 90-95.
    [19]
    Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014; 156: 836-843.
    [20]
    Onuma A, Fujii W, Sugiura K, Naito K. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes. J. Reprod. Dev. 2017; 63: 45-50.
    [21]
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013; 154: 1380-1389.
    [22]
    Sato M, Koriyama M, Watanabe S, Ohtsuka M, Sakurai T, Inada E, Saitoh I, Nakamura S, Miyoshi K. Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for indel mutations. Int. J. Mol. Sci. 2015; 16: 17838-17856.
    [23]
    Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013; 23: 720-723.
    [24]
    Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH, Lee HW, Kim JS. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res.2014; 24: 125-131.
    [25]
    Suzuki T, Asami M, Perry AC. Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci Rep. 2014; 4: 7621.
    [26]
    Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T. Somatic cell reprogramming-free generation of genetically modified pigs. Sci. Adv. 2016; 2: e1600803
    [27]
    Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, Zheng Y, Zheng J, Li Z, Yang S, Li S, Guo X, Li XJ. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci. Rep. 2017; 7: 42081.
    [28]
    Vilarino M, Rashid ST, Suchy FP, McNabb BR, van der Meulen T, Fine EJ, Ahsan S, Mursaliyev N, Sebastiano V, Diab SS, Huising MO, Nakauchi H, Ross PJ. CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep. Sci. Rep. 2017; 7: 17472.
    [29]
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013; 153: 910-918.
    [30]
    Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos .Trans. R Soc. Lond. B Biol. Sci. 2015; 370: 20140366
    [31]
    Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J. Mol. Cell Biol. 2018; doi: 10.1093/jmcb/mjy044. Page number?
    [32]
    Xie SL, Bian WP, Wang C, Junaid M, Zou JX, Pei DS.A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish. Sci. Rep. 2016; 6: 34555.
    [33]
    Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J, Chen YE. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J. Mol. Cell Biol. 2014; 6: 97-99.
    [34]
    Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front. Genet. 2018; 9: 360
    [35]
    Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, Swinton PG, Martin JF, Behringer RR. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev. Biol. 2014; 393: 3-9.
    [36]
    Zhang L, Jia R, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban L, Ji Y, Jin H, Feng X, Zheng Y. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. 2015; 10: e0120396.
    [37]
    Zhang X, Liang P, Ding C, Zhang Z, Zhou J, Xie X, Huang R, Sun Y, Sun H, Zhang J, Xu Y, Songyang Z, Huang J. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.Sci. Rep. 2016; 6:32565.
    [38]
    Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol. Life Sci. 2015; 72: 1175-1184.
  • Relative Articles

    [1]Siyu Chen, Zhiquan Liu, Hao Yu, Liangxue Lai, Zhanjun Li. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells[J]. Journal of Genetics and Genomics, 2022, 49(10): 927-933. doi: 10.1016/j.jgg.2022.03.007
    [2]Lin Zhu, Xiaoyan Yang, Juyi Li, Xiong Jia, Xiangli Bai, Ying Zhao, Wenzhuo Cheng, Meng Shu, Yan Zhu, Si Jin. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system[J]. Journal of Genetics and Genomics, 2021, 48(2): 134-146. doi: 10.1016/j.jgg.2021.01.008
    [3]Jinfu Zhang, Emmanuel M. Khazalwa, Hussein M. Abkallo, Yuan Zhou, Xiongwei Nie, Jinxue Ruan, Changzhi Zhao, Jieru Wang, Jing Xu, Xinyun Li, Shuhong Zhao, Erwei Zuo, Lucilla Steinaa, Shengsong Xie. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research[J]. Journal of Genetics and Genomics, 2021, 48(5): 347-360. doi: 10.1016/j.jgg.2021.03.015
    [4]Yan Li, Wenjing Li, Jun Li. The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science[J]. Journal of Genetics and Genomics, 2021, 48(8): 661-670. doi: 10.1016/j.jgg.2021.05.001
    [5]Xiaoxue Li, Tingdong Hu, Jiying Liu, Bin Fang, Xue Geng, Qiang Xiong, Lining Zhang, Yong Jin, Xiaorui Liu, Lin Li, Ying Wang, Rongfeng Li, Xiaochun Bai, Haiyuan Yang, Yifan Dai. A Bama miniature pig model of monoallelic TSC1 mutation for human tuberous sclerosis complex[J]. Journal of Genetics and Genomics, 2020, 47(12): 735-742. doi: 10.1016/j.jgg.2020.11.005
    [6]Sukumar Biswas, Jiaqi Tian, Rong Li, Xiaofei Chen, Zhijing Luo, Mingjiao Chen, Xiangxiang Zhao, Dabing Zhang, Staffan Persson, Zheng Yuan, Jianxin Shi. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding[J]. Journal of Genetics and Genomics, 2020, 47(5): 273-280. doi: 10.1016/j.jgg.2020.04.004
    [7]Jian Li, Zheng Wang, Guangming He, Ligeng Ma, Xing Wang Deng. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat[J]. Journal of Genetics and Genomics, 2020, 47(5): 263-272. doi: 10.1016/j.jgg.2020.05.004
    [8]Fenghua Zhang, Xianmei Li, Mudan He, Ding Ye, Feng Xiong, Golpour Amin, Zuoyan Zhu, Yonghua Sun. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells[J]. Journal of Genetics and Genomics, 2020, 47(1): 37-47. doi: 10.1016/j.jgg.2019.12.004
    [9]Chang Ye, Zhuoxin Chen, Zhan Liu, Feng Wang, Xionglei He. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish[J]. Journal of Genetics and Genomics, 2020, 47(2): 85-91. doi: 10.1016/j.jgg.2019.11.012
    [10]Qin Chen, Bin Fang, Ying Wang, Chu Li, Xiaoxue Li, Ronggen Wang, Qiang Xiong, Lining Zhang, Yong Jin, Manling Zhang, Xiaorui Liu, Lin Li, Lisha Mou, Rongfeng Li, Haiyuan Yang, Yifan Dai. Overexpressing dominant-negative FGFR2-IIIb impedes lung branching morphogenesis in pigs[J]. Journal of Genetics and Genomics, 2018, 45(3): 147-154. doi: 10.1016/j.jgg.2018.02.002
    [11]Bei Yang, Xiaosa Li, Liqun Lei, Jia Chen. APOBEC: From mutator to editor[J]. Journal of Genetics and Genomics, 2017, 44(9): 423-437. doi: 10.1016/j.jgg.2017.04.009
    [12]Yufeng Hua, Chun Wang, Jian Huang, Kejian Wang. A simple and efficient method for CRISPR/Cas9-induced mutant screening[J]. Journal of Genetics and Genomics, 2017, 44(4): 207-213. doi: 10.1016/j.jgg.2017.03.005
    [13]Chao Feng, Jing Yuan, Rui Wang, Yang Liu, James A. Birchler, Fangpu Han. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System[J]. Journal of Genetics and Genomics, 2016, 43(1): 37-43. doi: 10.1016/j.jgg.2015.10.002
    [14]Aurélie Lemoine, Gaëlle Chauveau-Le Friec, Francina Langa, Cédric Louvet. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping[J]. Journal of Genetics and Genomics, 2016, 43(5): 329-340. doi: 10.1016/j.jgg.2016.04.004
    [15]Yue Mei, Yan Wang, Huiqian Chen, Zhong Sheng Sun, Xing-Da Ju. Recent Progress in CRISPR/Cas9 Technology[J]. Journal of Genetics and Genomics, 2016, 43(2): 63-75. doi: 10.1016/j.jgg.2016.01.001
    [16]Andrew R. Bassett, Lesheng Kong, Ji-Long Liu. A Genome-Wide CRISPR Library for High-Throughput Genetic Screening in Drosophila Cells[J]. Journal of Genetics and Genomics, 2015, 42(6): 301-309. doi: 10.1016/j.jgg.2015.03.011
    [17]Andrew R. Bassett, Ji-Long Liu. CRISPR/Cas9 and Genome Editing in Drosophila[J]. Journal of Genetics and Genomics, 2014, 41(1): 7-19. doi: 10.1016/j.jgg.2013.12.004
    [18]Chuanxian Wei, Jiyong Liu, Zhongsheng Yu, Bo Zhang, Guanjun Gao, Renjie Jiao. TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications[J]. Journal of Genetics and Genomics, 2013, 40(6): 281-289. doi: 10.1016/j.jgg.2013.03.013
    [19]Haifang Qiu, Shuhong Zhao, Xuewen Xu, Martine Yerle, Bang Liu. Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene[J]. Journal of Genetics and Genomics, 2008, 35(5): 257-260. doi: 10.1016/S1673-8527(08)60036-3
    [20]Xiao Wu, Shulin Yang, Zhengmao Zhu, Shutang Feng, Kui Li. Characterization of the Full-length cDNA, Chromosomal Localization, and Polymorphism of the Porcine RPLP0 Gene[J]. Journal of Genetics and Genomics, 2007, 34(2): 104-108. doi: 10.1016/S1673-8527(07)60011-3
  • Cited by

    Periodical cited type(13)

    1. Jiao, Y., Liao, A., Jiang, X. et al. Editing the growth differentiation factor 9 gene affects porcine oocytes in vitro maturation by inactivating the maturation promoting factor. Theriogenology, 2025, 236: 120-136. doi:10.1016/j.theriogenology.2025.02.004
    2. Hamze, J.G., Cambra, J.M., Navarro-Serna, S. et al. Navigating gene editing in porcine embryos: Methods, challenges, and future perspectives. Genomics, 2025, 117(2): 111014. doi:10.1016/j.ygeno.2025.111014
    3. Ju, W.S., Kim, S., Lee, J.-Y. et al. Gene Editing for Enhanced Swine Production: Current Advances and Prospects. Animals, 2025, 15(3): 422. doi:10.3390/ani15030422
    4. Sato, K., Sasaguri, H., Kumita, W. et al. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Animal, 2024, 53(9): 244-251. doi:10.1038/s41684-024-01424-0
    5. Popova, J., Bets, V., Kozhevnikova, E. Perspectives in Genome-Editing Techniques for Livestock. Animals, 2023, 13(16): 2580. doi:10.3390/ani13162580
    6. Geisert, R.D., Johns, D.N., Pfeiffer, C.A. et al. Gene editing provides a tool to investigate genes involved in reproduction of pigs. Molecular Reproduction and Development, 2023, 90(7): 459-468. doi:10.1002/mrd.23620
    7. Jiang, T., Wen, K., Liao, A. et al. Efficient editing BMP15 in porcine oocytes through microinjection of CRISPR ctRNP. Theriogenology, 2023, 198: 241-249. doi:10.1016/j.theriogenology.2022.12.043
    8. Whitworth, K.M., Green, J.A., Redel, B.K. et al. Improvements in pig agriculture through gene editing. CABI Agriculture and Bioscience, 2022, 3(1): 41. doi:10.1186/s43170-022-00111-9
    9. Krivonogova, A.S., Bruter, A.V., Makutina, V.A. et al. AAV infection of bovine embryos: Novel, simple and effective tool for genome editing. Theriogenology, 2022, 193: 77-86. doi:10.1016/j.theriogenology.2022.09.007
    10. Echigoya, Y., Trieu, N., Duddy, W. et al. A dystrophin exon‐52 deleted miniature pig model of duchenne muscular dystrophy and evaluation of exon skipping. International Journal of Molecular Sciences, 2021, 22(23): 13065. doi:10.3390/ijms222313065
    11. Ratner, L.D., La Motta, G.E., Briski, O. et al. Practical Approaches for Knock-Out Gene Editing in Pigs. Frontiers in Genetics, 2021, 11: 617850. doi:10.3389/fgene.2020.617850
    12. Tanihara, F., Hirata, M., Nguyen, N.T. et al. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnology, 2020, 20(1): 40. doi:10.1186/s12896-020-00638-7
    13. Su, X., Chen, W., Cai, Q. et al. Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Science China Life Sciences, 2020, 63(7): 996-1005. doi:10.1007/s11427-019-1611-1

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.9 %FULLTEXT: 24.9 %META: 74.7 %META: 74.7 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionChina: 24.4 %China: 24.4 %India: 1.4 %India: 1.4 %Other: 1.4 %Other: 1.4 %Russian Federation: 10.6 %Russian Federation: 10.6 %United States: 62.2 %United States: 62.2 %ChinaIndiaOtherRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads (1) Cited by (13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return