[1] |
Alberto, F.J., Boyer, F., Orozco-terWengel, P., Streeter, I., Servin, B., de Villemereuil, P., Benjelloun, B., Librado, P., Biscarini, F., Colli, L., et al., 2018. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813.
|
[2] |
Bertolini, F., Servin, B., Talenti, A., Rochat, E., Kim, E.S., Oget, C., Palhiere, I., Crisa, A., Catillo, G., Steri, R., et al., 2018. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. 50, 57.
|
[3] |
Browning, S.R.,Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097.
|
[4] |
Cai, Y., Fu, W., Cai, D., Heller, R., Zheng, Z., Wen, J., Li, H., Wang, X., Alshawi, A., Sun, Z., et al., 2020. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China. Mol. Biol. Evol. 37, 2099-2109.
|
[5] |
Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
|
[6] |
Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X.,Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92.
|
[7] |
Cook, C.E., Bergman, M.T., Finn, R.D., Cochrane, G., Birney, E.,Apweiler, R., 2016. The European Bioinformatics Institute in 2016: data growth and integration. Nucleic Acids Res. 44, D20-26.
|
[8] |
Daly, K.G., Maisano Delser, P., Mullin, V.E., Scheu, A., Mattiangeli, V., Teasdale, M.D., Hare, A.J., Burger, J., Verdugo, M.P., Collins, M.J., et al., 2018. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85-88.
|
[9] |
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
|
[10] |
DeGiorgio, M., Huber, C.D., Hubisz, M.J., Hellmann, I.,Nielsen, R., 2016. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics 32, 1895-1897.
|
[11] |
Deng, W., Nickle, D.C., Learn, G.H., Maust, B.,Mullins, J.I., 2007. ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics 23, 2334-2336.
|
[12] |
Dimitrieva, S.,Bucher, P., 2013. UCNEbase--a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res. 41, D101-109.
|
[13] |
Dong, Y., Zhang, X., Xie, M., Arefnezhad, B., Wang, Z., Wang, W., Feng, S., Huang, G., Guan, R., Shen, W., et al., 2015. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics 16, 431.
|
[14] |
Grossen, C., Guillaume, F., Keller, L.F.,Croll, D., 2020. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001.
|
[15] |
Higgins, C.A., Petukhova, L., Harel, S., Ho, Y.Y., Drill, E., Shapiro, L., Wajid, M.,Christiano, A.M., 2014. FGF5 is a crucial regulator of hair length in humans. Proc. Natl. Acad. Sci. U.S.A. 111, 10648-10653.
|
[16] |
Kent, W.J., 2002. BLAT--the BLAST-like alignment tool. Genome Res. 12, 656-664.
|
[17] |
Korneliussen, T.S., Albrechtsen, A.,Nielsen, R., 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356.
|
[18] |
Lee, C.M., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Gonzalez, J.N., Hinrichs, A.S., Lee, B.T., Nassar, L.R., Powell, C.C., et al., 2020. UCSC Genome Browser enters 20th year. Nucleic Acids Res. 48, D756-D761.
|
[19] |
Li, H., 2012. Exploring single-sample snp and indel calling with whole-genome de novo assembly. Bioinformatics 28, 1838-1844.
|
[20] |
Li, T., Guan, J., Huang, Z., Hu, X.,Zheng, X., 2014. RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. J. Cell Sci. 127, 2238-2248.
|
[21] |
Marciniak, S.,Perry, G.H., 2017. Harnessing ancient genomes to study the history of human adaptation. Nat. Rev. Genet. 18, 659-674.
|
[22] |
McGuinness, E.T.,Butler, J.R., 1985. NAD+ kinase--a review. Int. J. Biochem. 17, 1-11.
|
[23] |
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
|
[24] |
Menzi, F., Keller, I., Reber, I., Beck, J., Brenig, B., Schutz, E., Leeb, T.,Drogemuller, C., 2016. Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation. Sci. Rep. 6, 28438.
|
[25] |
Meruvu, S., Hugendubler, L.,Mueller, E., 2011. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J. Biol. Chem. 286, 26516-26523.
|
[26] |
Modyanov, N.N., Petrukhin, K.E., Sverdlov, V.E., Grishin, A.V., Orlova, M.Y., Kostina, M.B., Makarevich, O.I., Broude, N.E., Monastyrskaya, G.S.,Sverdlov, E.D., 1991. The family of human Na,K-ATPase genes. ATP1AL1 gene is transcriptionally competent and probably encodes the related ion transport ATPase. FEBS Lett. 278, 91-94.
|
[27] |
Nei, M.,Li, W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76, 5269-5273.
|
[28] |
Nguyen, C.L., Possemato, R., Bauerlein, E.L., Xie, A., Scully, R.,Hahn, W.C., 2012. Nek4 regulates entry into replicative senescence and the response to DNA damage in human fibroblasts. Mol. Cell Biol. 32, 3963-3977.
|
[29] |
Nicolazzi, E.L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., Lawley, C., Pirani, A., Soans, C., Brew, F., Jorjani, H., et al., 2015. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics 16, 283.
|
[30] |
Nielsen, R., Williamson, S., Kim, Y., Hubisz, M.J., Clark, A.G.,Bustamante, C., 2005. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566-1575.
|
[31] |
Page, N.M., Butlin, D.J., Lomthaisong, K.,Lowry, P.J., 2001. The human apolipoprotein L gene cluster: identification, classification, and sites of distribution. Genomics 74, 71-78.
|
[32] |
Patterson, N., Price, A.L.,Reich, D., 2006. Population structure and eigenanalysis. PLoS Genet. 2, e190.
|
[33] |
Prive, F., Luu, K., Vilhjalmsson, B.J.,Blum, M.G.B., 2020. Performing highly efficient genome scans for local adaptation with R package pcadapt version 4. Mol. Biol. Evol. 37, 2153-2154.
|
[34] |
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
|
[35] |
Rubin, C.J., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., et al., 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587-591.
|
[36] |
Russo, R., Marra, R., Andolfo, I., De Rosa, G., Rosato, B.E., Manna, F., Gambale, A., Raia, M., Unal, S., Barella, S., et al., 2019. Characterization of two cases of congenital dyserythropoietic anemia type I shed light on the uncharacterized c15orf41 protein. Front. Physiol. 10, 621.
|
[37] |
Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E.H., McCarroll, S.A., Gaudet, R., et al., 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918.
|
[38] |
Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M.,Sirotkin, K., 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308-311.
|
[39] |
Song, S., Tian, D., Li, C., Tang, B., Dong, L., Xiao, J., Bao, Y., Zhao, W., He, H.,Zhang, Z., 2018. Genome Variation Map: a data repository of genome variations in BIG Data Center. Nucleic Acids Res. 46, D944-D949.
|
[40] |
Stella, A., Nicolazzi, E.L., Van Tassell, C.P., Rothschild, M.F., Colli, L., Rosen, B.D., Sonstegard, T.S., Crepaldi, P., Tosser-Klopp, G.,Joost, S., 2018. AdaptMap: exploring goat diversity and adaptation. Genet. Sel. Evol. 50, 61.
|
[41] |
Storey, R.F., Melissa Thornton, S., Lawrance, R., Husted, S., Wickens, M., Emanuelsson, H., Cannon, C.P., Heptinstall, S.,Armstrong, M., 2009. Ticagrelor yields consistent dose-dependent inhibition of ADP-induced platelet aggregation in patients with atherosclerotic disease regardless of genotypic variations in P2RY12, P2RY1, and ITGB3. Platelets 20, 341-348.
|
[42] |
Szpiech, Z.A.,Hernandez, R.D., 2014. Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824-2827.
|
[43] |
Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
|
[44] |
Voight, B.F., Kudaravalli, S., Wen, X.,Pritchard, J.K., 2006. A map of recent positive selection in the human genome. PLoS Biol. 4, e72.
|
[45] |
Wang, Y., Ru, Y., Liu, G., Dong, S., Li, Y., Zhu, X., Zhang, F., Chang, Y.Z.,Nie, G., 2018. Identification of CDAN1, C15ORF41 and SEC23B mutations in Chinese patients affected by congenital dyserythropoietic anemia. Gene 640, 73-78.
|
[46] |
Weir, B.S.,Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.
|
[47] |
Zhang, B., Chang, L., Lan, X., Asif, N., Guan, F., Fu, D., Li, B., Yan, C., Zhang, H., Zhang, X., et al., 2018. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere, and meat. Gigascience 7, giy105.
|
[48] |
Zheng, Z., Wang, X., Li, M., Li, Y., Yang, Z., Wang, X., Pan, X., Gong, M., Zhang, Y., Guo, Y., et al., 2020. The origin of domestication genes in goats. Sci. Adv. 6, eaaz5216.
|