5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 4
Apr.  2022
Turn off MathJax
Article Contents

Mitochondrial sirtuins, metabolism, and aging

doi: 10.1016/j.jgg.2021.11.005
Funds:

This work was supported by the National Natural Science Foundation of China (91949209, 91749202, 92149301, 92168201), the National Key Research and Development Program of China (2018YFC2000100, 2020YFA0804000), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16010000), the National Natural Science Foundation of China (81921006, 81625009, 82125011), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-221), the 14th Five-year Network Security and Informatization Plan of Chinese Academy of Sciences (WX145XQ07-18), Informatization Plan of Chinese Academy of Sciences (CAS-WX2021SF-0301), and the Milky Way Research Foundation (MWRF).

  • Received Date: 2021-08-11
  • Revised Date: 2021-11-09
  • Accepted Date: 2021-11-10
  • Publish Date: 2022-04-30
  • Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Multiple signaling pathways that regulate metabolism also play critical roles in aging, such as PI3K/AKT, mTOR, AMPK, and sirtuins (SIRTs). Among them, sirtuins are known as a protein family with versatile functions, such as metabolic control, epigenetic modification and lifespan extension. Therefore, by understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging from the perspectives of metabolic regulation. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will discuss canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and aging-related diseases.
  • loading
  • Aging Atlas Consortium, 2021. Aging Atlas:a multi-omics database for aging biology. Nucleic Acids Res. 49, D825-D830
    Ahmed, M.A., O'Callaghan, C., Chang, E.D., Jiang, H.,Vassilopoulos, A., 2020. Context-dependent roles for SIRT2 and SIRT3 in tumor development upon calorie restriction or high fat diet. Front. Oncol. 9, 1462
    Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X.,Finkel, T., 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105, 14447-14452
    Anderson, K.A., Huynh, F.K., Fisher-Wellman, K., Stuart, J.D., Peterson, B.S., Douros, J.D., Wagner, G.R., Thompson, J.W., Madsen, A.S.,Green, M.F., 2017. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25, 838-855. e815
    Bando, H., Atsumi, T., Nishio, T., Niwa, H., Mishima, S., Shimizu, C., Yoshioka, N., Bucala, R.,Koike, T., 2005. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784-5792
    Bao, X., Wang, Y., Li, X., Li, X.-M., Liu, Z., Yang, T., Wong, C.F., Zhang, J., Hao, Q.,Li, X.D., 2014. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife 3, e02999
    Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., Greco, V., Maggiolini, M., Feraco, E.,Mari, V., 2005. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258-263
    Bergmann, L., Lang, A., Bross, C., Altinoluk-Hambuchen, S., Fey, I., Overbeck, N., Stefanski, A., Wiek, C., Kefalas, A.,Verhulsdonk, P., 2020. Subcellular localization and mitotic interactome analyses identify SIRT4 as a centrosomally localized and microtubule associated protein. Cells 9, 1950
    Bharathi, S.S., Zhang, Y., Mohsen, A.-W., Uppala, R., Balasubramani, M., Schreiber, E., Uechi, G., Beck, M.E., Rardin, M.J.,Vockley, J., 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288, 33837-33847
    Bi, S., Liu, Z., Wu, Z., Wang, Z., Liu, X., Wang, S., Ren, J., Yao, Y., Zhang, W.,Song, M., 2020. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein & cell 11, 483-504
    Bonkowski, M.S.,Sinclair, D.A., 2016. Slowing ageing by design:the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Bio. 17, 679-690
    Braidy, N., Poljak, A., Grant, R., Jayasena, T., Mansour, H., Chan-Ling, T., Smythe, G., Sachdev, P.,Guillemin, G.J., 2015. Differential expression of sirtuins in the aging rat brain. Front. Cell. Neurosci. 9, 167
    Bringman-Rodenbarger, L.R., Guo, A.H., Lyssiotis, C.A.,Lombard, D.B., 2018. Emerging roles for SIRT5 in metabolism and cancer. Antioxid. Redox Signal. 28, 677-690
    Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D.T.,Chen, D., 2013. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319-327
    Brunn, G.J., Hudson, C.C., Sekulic, A., Williams, J.M., Hosoi, H., Houghton, P.J., Lawrence, J.C.,Abraham, R.T., 1997. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99-101
    Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P.,Auwerx, J., 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060
    Chavez, J.A., Roach, W.G., Keller, S.R., Lane, W.S.,Lienhard, G.E., 2008. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J. Biol. Chem. 283, 9187-9195
    Chen, C., Liu, Y., Liu, Y.,Zheng, P., 2009. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75-ra75
    Chen, T., Liu, J., Li, N., Wang, S., Liu, H., Li, J., Zhang, Y.,Bu, P., 2015. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10, e0118909
    Cheng, Y., Ren, X., Gowda, A.S., Shan, Y., Zhang, L., Yuan, Y., Patel, R., Wu, H., Huber-Keener, K.,Yang, J., 2013. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 4, e731-e731
    Chu, Q., L, F., He, Y., Jiang, X., Cai, Y., Wu, Z., Yan, K., Geng, L., Zhang, Y., Feng, H., et al., 2021. mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells. Protein & Cell In Press
    Cimen, H., Han, M.-J., Yang, Y., Tong, Q., Koc, H.,Koc, E.C., 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-311
    Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R.,Sinclair, D.A., 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392
    Corona, J.C.,Duchen, M.R., 2015. PPARγ and PGC-1α as therapeutic targets in Parkinson's. Neurochem. Res. 40, 308-316
    Csibi, A., Fendt, S.-M., Li, C., Poulogiannis, G., Choo, A.Y., Chapski, D.J., Jeong, S.M., Dempsey, J.M., Parkhitko, A.,Morrison, T., 2013. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854
    Cui, X.-X., Li, X., Dong, S.-Y., Guo, Y.-J., Liu, T.,Wu, Y.-C., 2017. SIRT3 deacetylated and increased citrate synthase activity in PD model. Biochem. Biophys. Res. Commun. 484, 767-773
    Dai, S.-H., Chen, T., Wang, Y.-H., Zhu, J., Luo, P., Rao, W., Yang, Y.-F., Fei, Z.,Jiang, X.-F., 2014. Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2 and mitochondrial biogenesis. Int. J. Mol. Sci. 15, 14591-14609
    Das, S., Mitrovsky, G., Vasanthi, H.R.,Das, D.K., 2014. Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid. Med. Cell Longev. 2014
    DeBerardinis, R.J.,Chandel, N.S., 2016. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200
    Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang, Q.,Bi, S., 2021. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203-4219
    Diaz-Canestro, C., Merlini, M., Bonetti, N.R., Liberale, L., Wust, P., Briand-Schumacher, S., Klohs, J., Costantino, S., Miranda, M.,Schoedon-Geiser, G., 2018. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int. J. Cardiol. 260, 148-155
    Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H.,Choi, B.H., 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809
    Fan, J., Shan, C., Kang, H.-B., Elf, S., Xie, J., Tucker, M., Gu, T.-L., Aguiar, M., Lonning, S.,Chen, H., 2014. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534-548
    Feldeisen, S.E.,Tucker, K.L., 2007. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl. Physiol. Nutr. Metab. 32, 46-60
    Finkel, T., Deng, C.-X.,Mostoslavsky, R., 2009. Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591
    Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., Van De Rijn, M., Rosen, G.D., Perou, C.M.,Whyte, R.I., 2001. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. U. S. A. 98, 13784-13789
    Geng, L., Liu, Z., Wang, S., Sun, S., Ma, S., Liu, X., Chan, P., Sun, L., Song, M.,Zhang, W., 2019. Low-dose quercetin positively regulates mouse healthspan. Protein & cell 10, 770-775
    George, J., Nihal, M., Singh, C.K., Ahmad, N., 2019. 4'-Bromo-resveratrol, a dual Sirtuin-1 and Sirtuin-3 inhibitor, inhibits melanoma cell growth through mitochondrial metabolic reprogramming. Mol Carcinog 58, 1876-1885
    Gertz, M.,Steegborn, C., 2016. Using mitochondrial sirtuins as drug targets:disease implications and available compounds. Cell Mol. Life Sci. 73, 2871-2896
    Giblin, W., Bringman-Rodenbarger, L., Guo, A.H., Kumar, S., Monovich, A.C., Mostafa, A.M., Skinner, M.E., Azar, M., Mady, A.S.,Chung, C.H., 2021. The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. J. Clin. Investig
    Giblin, W., Skinner, M.E.,Lombard, D.B., 2014. Sirtuins:guardians of mammalian healthspan. Trends Genet. 30, 271-286
    Guedouari, H., Daigle, T., Scorrano, L.,Hebert-Chatelain, E., 2017. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim. Biophys. Acta. Mol. Cell. Res. 1864, 169-176
    Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M.,Blander, G., 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941-954
    Hallows, W.C., Lee, S.,Denu, J.M., 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A. 103, 10230-10235
    Hallows, W.C., Yu, W., Smith, B.C., Devires, M.K., Ellinger, J.J., Someya, S., Shortreed, M.R., Prolla, T., Markley, J.L.,Smith, L.M., 2011. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139-149
    Han, Y., Zhou, S., Coetzee, S.,Chen, A., 2019. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front. Physiol. 10, 1006
    He, X., Memczak, S., Qu, J., Belmonte, J.C.I.,Liu, G.-H., 2020. Single-cell omics in ageing:a young and growing field. Nat. Metab. 2, 293-302
    Herzig, S.,Shaw, R.J., 2018. AMPK:guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Bio. 19, 121-135
    Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S.,Ilkayeva, O.R., 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125
    Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M.M.,Schwer, B., 2011. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell. 44, 177-190
    Hoxhaj, G.,Manning, B.D., 2020. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74-88
    Huang, G.,Zhu, G., 2018. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. Onco Targets Ther 11, 3395
    Inoki, K., Kim, J.,Guan, K.-L., 2012. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381-400
    Inoki, K., Zhu, T.,Guan, K.-L., 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590
    Jeong, S.M., Xiao, C., Finley, L.W., Lahusen, T., Souza, A.L., Pierce, K., Li, Y.-H., Wang, X., Laurent, G.,German, N.J., 2013. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450-463
    Jing, E., Emanuelli, B., Hirschey, M.D., Boucher, J., Lee, K.Y., Lombard, D., Verdin, E.M.,Kahn, C.R., 2011. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 108, 14608-14613
    Jing, E., O'Neill, B.T., Rardin, M.J., Kleinridders, A., Ilkeyeva, O.R., Ussar, S., Bain, J.R., Lee, K.Y., Verdin, E.M.,Newgard, C.B., 2013. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404-3417
    Kang, W., Jin, T., Zhang, T., Ma, S., Yan, H., Liu, Z., Ji, Z., Cai, Y., Wang, S.,Song, M., 2022. Regeneration Roadmap:database resources for regenerative biology. Nucleic Acids Res
    Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V.,Benzer, S., 2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890
    Koundouros, N.,Poulogiannis, G., 2018. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front. Oncol. 8, 160
    Kumar, S.,Lombard, D.B., 2015. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid. Redox Signal. 22, 1060-1077
    Lamming, D.W., Ye, L., Katajisto, P., Goncalves, M.D., Saitoh, M., Stevens, D.M., Davis, J.G., Salmon, A.B., Richardson, A.,Ahima, R.S., 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638-1643
    Lan, F., Cacicedo, J.M., Ruderman, N.,Ido, Y., 2008. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1:possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635
    Lang, A., Anand, R., Altinoluk-Hambuchen, S., Ezzahoini, H., Stefanski, A., Iram, A., Bergmann, L., Urbach, J., Bohler, P.,Hansel, J., 2017. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY) 9, 2163
    Laurent, G., Boer, V.C.J.d., Finley, L.W.S., Sweeney, M., Lu, H., Schug, T.T., Cen, Y., Jeong, S.M., Li, X., Sauve, A.A., et al., 2013a. SIRT4 Represses Peroxisome Proliferator-Activated Receptor α Activity To Suppress Hepatic Fat Oxidation. Mol. Cell Biol. 33, 4552-4561
    Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies, M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G.,Vaitheesvaran, B., 2013b. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686-698
    Lescai, F., Blanche, H., Nebel, A., Beekman, M., Sahbatou, M., Flachsbart, F., Slagboom, E., Schreiber, S., Sorbi, S.,Passarino, G., 2009. Human longevity and 11p15. 5:a study in 1321 centenarians. Eur. J. Hum. Genet. 17, 1515-1519
    Li, Q., Wang, H., Zhang, J., Kong, A.P.-s., Li, G., Lam, T.-p., Cheng, J.C.-y.,Lee, W.Y.-w., 2021. Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice. Bone 144, 115827
    Li, S., Dou, X., Ning, H., Song, Q., Wei, W., Zhang, X., Shen, C., Li, J., Sun, C.,Song, Z., 2017. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66, 936-952
    Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E.,Shyy, J.Y.-J., 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388
    Li, Y., Zhang, W., Chang, L., Han, Y., Sun, L., Gong, X., Tang, H., Liu, Z., Deng, H.,Ye, Y., 2016. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein & cell 7, 478-488
    Liang, F., Wang, X., Ow, S.H., Chen, W.,Ong, W.C., 2017. Sirtuin 5 is anti-apoptotic and anti-oxidative in cultured SH-EP neuroblastoma cells. Neurotox. Res. 31, 63-76
    Lin, Z.-F., Xu, H.-B., Wang, J.-Y., Lin, Q., Ruan, Z., Liu, F.-B., Jin, W., Huang, H.-H.,Chen, X., 2013. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun. 441, 191-195
    Ling, W., Krager, K., Richardson, K.K., Warren, A.D., Ponte, F., Aykin-Burns, N., Manolagas, S.C., Almeida, M.,Kim, H.-N., 2021. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI insight 6
    Liszt, G., Ford, E., Kurtev, M.,Guarente, L., 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320
    Liu, B., Che, W., Xue, J., Zheng, C., Tang, K., Zhang, J., Wen, J.,Xu, Y., 2013a. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol. Biochem. 32, 655-662
    Liu, B., Che, W., Zheng, C., Liu, W., Wen, J., Fu, H., Tang, K., Zhang, J.,Xu, Y., 2013b. SIRT5:a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol. Biochem. 32, 1050-1059
    Liu, G.Y.,Sabatini, D.M., 2020. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183-203
    Liu, L., Peritore, C., Ginsberg, J., Shih, J., Arun, S.,Donmez, G., 2015a. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease. Behav. Brain Res. 281, 215-221
    Liu, Y., Tang, G., Zhang, Z., Wang, Y.,Yang, G.-Y., 2014. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci. Lett. 579, 46-51
    Liu, Z.P., Geng, L.L., Sun, L., Wang, Q., Yu, Y., Yan, P., Chuqian Liang, J.R., Song, M., Ji, Q., Lei, J., Cai, Y., Li, J., Yan, K., Chu, Q., Li, J., Wang, S., Li, C., Jing-DongHan, J., Reyna Hernandez-Benitez, N.S.-C., Belmonte, J. C., Zhang, W.Q., Qu, J., Liu, G.-H., 2022. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery. https://doi.org/10.1038/s41421-021-00361-3. In press
    Liu, Y.J., McIntyre, R.L., Janssens, G.E.,Houtkooper, R.H., 2020. Mitochondrial fission and fusion:A dynamic role in aging and potential target for age-related disease. Mech. Ageing Dev. 186, 111212
    Lombard, D.B., Alt, F.W., Cheng, H.-L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D.,Murphy, A., 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807-8814
    Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M.,Kroemer, G., 2013. The hallmarks of aging. Cell 153, 1194-1217
    Lopez-Otin, C., Galluzzi, L., Freije, J.M., Madeo, F.,Kroemer, G., 2016. Metabolic control of longevity. Cell 166, 802-821
    Luo, Y.-X., Tang, X., An, X.-Z., Xie, X.-M., Chen, X.-F., Zhao, X., Hao, D.-L., Chen, H.-Z.,Liu, D.-P., 2017. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J. 38, 1389-1398
    Ma, S., Sun, S., Geng, L., Song, M., Wang, W., Ye, Y., Ji, Q., Zou, Z., Wang, S.,He, X., 2020. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984-1001. e1022
    Martini, M., De Santis, M.C., Braccini, L., Gulluni, F.,Hirsch, E., 2014. PI3K/AKT signaling pathway and cancer:an updated review. Ann. Med. 46, 372-383
    Mathias, R.A., Greco, T.M., Oberstein, A., Budayeva, H.G., Chakrabarti, R., Rowland, E.A., Kang, Y., Shenk, T.,Cristea, I.M., 2014. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615-1625
    Matsushita, N., Yonashiro, R., Ogata, Y., Sugiura, A., Nagashima, S., Fukuda, T., Inatome, R.,Yanagi, S., 2011. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 16, 190-202
    McDonnell, E., Peterson, B.S., Bomze, H.M.,Hirschey, M.D., 2015. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol. Metab. 26, 486-492
    Mendoza, M.C., Er, E.E.,Blenis, J., 2011. The Ras-ERK and PI3K-mTOR pathways:cross-talk and compensation. Trends Biochem. Sci. 36, 320-328
    Meng, H., Yan, W.-Y., Lei, Y.-H., Wan, Z., Hou, Y.-Y., Sun, L.-K.,Zhou, J.-P., 2019. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front. Aging Neurosci. 11, 313
    Min, Z., Gao, J.,Yu, Y., 2019. The roles of mitochondrial SIRT4 in cellular metabolism. Front. Endocrinol. (Lausanne) 9, 783
    Morigi, M., Perico, L., Rota, C., Longaretti, L., Conti, S., Rottoli, D., Novelli, R., Remuzzi, G.,Benigni, A., 2015. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Investig. 125, 715-726
    Nakagawa, T.,Guarente, L., 2011. Sirtuins at a glance. J. Cell Sci. 124, 833-838
    Nakagawa, T., Lomb, D.J., Haigis, M.C.,Guarente, L., 2009. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560-570
    Ng, T., Leprivier, G., Robertson, M., Chow, C., Martin, M., Laderoute, K., Davicioni, E., Triche, T.,Sorensen, P., 2012. The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ. 19, 501-510
    Nishida, Y., Rardin, M.J., Carrico, C., He, W., Sahu, A.K., Gut, P., Najjar, R., Fitch, M., Hellerstein, M.,Gibson, B.W., 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59, 321-332
    Novgorodov, S.A., Riley, C.L., Keffler, J.A., Yu, J., Kindy, M.S., Macklin, W.B., Lombard, D.B.,Gudz, T.I., 2016. SIRT3 deacetylates ceramide synthases:implications for mitochondrial dysfunction and brain injury. J Biol. Chem. 291, 1957-1973
    Ogura, Y., Kitada, M., Monno, I., Kanasaki, K., Watanabe, A.,Koya, D., 2018. Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Report 23, 153-159
    Oh, W.J., Wu, C.c., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B.,Jacinto, E., 2010. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. The EMBO J. 29, 3939-3951
    Oldham, S., 2011. High fat diet induced obesity and nutrient sensing TOR signaling. Trends in endocrinology and metabolism:TEM 22, 45
    Pan, H., Guan, D., Liu, X., Li, J., Wang, L., Wu, J., Zhou, J., Zhang, W., Ren, R.,Zhang, W., 2016. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 26, 190-205
    Papa, L.,Germain, D., 2014. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 34, 699-710
    Park, J., Chen, Y., Tishkoff, D.X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B.M.,Skinner, M.E., 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919-930
    Partridge, L., Deelen, J.,Slagboom, P.E., 2018. Facing up to the global challenges of ageing. Nature 561, 45-56
    Patel, M.,Korotchkina, L., 2006. Regulation of the pyruvate dehydrogenase complex. Biochem. Soc. Trans. 34, 217-222
    Picca, A., Mankowski, R.T., Burman, J.L., Donisi, L., Kim, J.-S., Marzetti, E.,Leeuwenburgh, C., 2018. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 15, 543-554
    Qiu, X., Brown, K., Hirschey, M.D., Verdin, E.,Chen, D., 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662-667
    Ramadani-Muja, J., Gottschalk, B., Pfeil, K., Burgstaller, S., Rauter, T., Bischof, H., Waldeck-Weiermair, M., Bugger, H., Graier, W.F.,Malli, R., 2019. Visualization of sirtuin 4 distribution between mitochondria and the nucleus, based on bimolecular fluorescence self-complementation. Cells 8, 1583
    Rardin, M.J., He, W., Nishida, Y., Newman, J.C., Carrico, C., Danielson, S.R., Guo, A., Gut, P., Sahu, A.K.,Li, B., 2013a. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18, 920-933
    Rardin, M.J., Newman, J.C., Held, J.M., Cusack, M.P., Sorensen, D.J., Li, B., Schilling, B., Mooney, S.D., Kahn, C.R.,Verdin, E., 2013b. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 110, 6601-6606
    Ren, R., Ocampo, A., Liu, G.-H.,Belmonte, J.C.I., 2017. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 26, 460-474
    Roth, M.,Chen, W., 2014. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609-1620
    Sadhukhan, S., Liu, X., Ryu, D., Nelson, O.D., Stupinski, J.A., Li, Z., Chen, W., Zhang, S., Weiss, R.S.,Locasale, J.W., 2016. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. P Proc. Natl. Acad. Sci. U. S. A. 113, 4320-4325
    Saggerson, D., 2008. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 28, 253-272
    Salminen, A., Hyttinen, J.M.,Kaarniranta, K., 2011. AMP-activated protein kinase inhibits NF-κB signaling and inflammation:impact on healthspan and lifespan. J. Mol. Med. 89, 667-676
    Salminen, A.,Kaarniranta, K., 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230-241
    Samant, S.A., Zhang, H.J., Hong, Z., Pillai, V.B., Sundaresan, N.R., Wolfgeher, D., Archer, S.L., Chan, D.C.,Gupta, M.P., 2014. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell Biol. 34, 807-819
    Saxton, R.A.,Sabatini, D.M., 2017. mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976
    Scher, M.B., Vaquero, A.,Reinberg, D., 2007. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21, 920-928
    Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S.,Verdin, E., 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A. 103, 10224-10229
    Seo, D.-B., Jeong, H.W., Lee, S.-J.,Lee, S.-J., 2014. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. J. Agric. Food Chem. 62, 4298-4305
    Shan, H., Geng, L., Jiang, X., Song, M., Wang, J., Liu, Z., Zhuo, X., Wu, Z., Hu, J.,Ji, Z., 2021. Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein & Cell, 1-8
    Shi, H., Deng, H.-X., Gius, D., Schumacker, P.T., Surmeier, D.J.,Ma, Y.-C., 2017. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum. Mol. Genet. 26, 1915-1926
    Shimazu, T., Hirschey, M.D., Hua, L., Dittenhafer-Reed, K.E., Schwer, B., Lombard, D.B., Li, Y., Bunkenborg, J., Alt, F.W.,Denu, J.M., 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654-661
    Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M.,Prolla, T.A., 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812
    Song, W., Song, Y., Kincaid, B., Bossy, B.,Bossy-Wetzel, E., 2013. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons:neuroprotection by SIRT3 and PGC-1α. Neurobiol. Dis. 51, 72-81
    Sun, N., Youle, R.J.,Finkel, T., 2016. The mitochondrial basis of aging. Mol Cell 61, 654-666
    Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A.,Gupta, M.P., 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Investig. 119, 2758-2771
    Sweeney, G.,Song, J., 2016. The association between PGC-1α and Alzheimer's disease. Anat. Cell Biol. 49, 1-6
    Tomaselli, D., Steegborn, C., Mai, A.,Rotili, D., 2020. Sirt4:a multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Front. Oncol. 10, 474
    Torrens-Mas, M., Oliver, J., Roca, P.,Sastre-Serra, J., 2017. SIRT3:oncogene and tumor suppressor in cancer. Cancers (Basel) 9, 90
    Van de Ven, R.A., Santos, D.,Haigis, M.C., 2017. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med. 23, 320-331
    Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L.,Muller, F., 2003. Influence of TOR kinase on lifespan in C. elegans. Nature 426, 620-620
    Villena, J.A., 2015. New insights into PGC-1 coactivators:redefining their role in the regulation of mitochondrial function and beyond. The FEBS journal 282, 647-672
    Wang, C.-H.,Wei, Y.-H., 2020. Roles of mitochondrial sirtuins in mitochondrial function, redox homeostasis, insulin resistance and type 2 diabetes. Int. J. Mol. Sci. 21, 5266
    Wang, F., Wang, K., Xu, W., Zhao, S., Ye, D., Wang, Y., Xu, Y., Zhou, L., Chu, Y.,Zhang, C., 2017. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell reports 19, 2331-2344
    Wang, L., Zhou, H., Wang, Y., Cui, G.,Di, L., 2015. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis. 6, e1620-e1620
    Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., Liu, Z., Min, Z., Hu, H.,Jing, Y., 2020. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585-600. e519
    Wang, W., Zheng, Y., Sun, S., Li, W., Song, M., Ji, Q., Wu, Z., Liu, Z., Fan, Y.,Liu, F., 2021. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13
    Weir, H.J., Murray, T.K., Kehoe, P.G., Love, S., Verdin, E.M., O'Neill, M.J., Lane, J.D.,Balthasar, N., 2012. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS One 7, e48225
    Winzell, M.S.,Ahren, B., 2004. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53, S215-S219
    Wu, Y.-T., Lee, H.-C., Liao, C.-C.,Wei, Y.-H., 2013. Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta Mol Basis Dis. 1832, 216-227
    Xiangyun, Y., Xiaomin, N., 2017. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8, 6984
    Yan, D., Franzini, A., Pomicter, A.D., Halverson, B.J., Antelope, O., Mason, C.C., Ahmann, J.M., Senina, A.V., Vellore, N.A.,Jones, C.L., 2021. SIRT5 is a druggable metabolic vulnerability in acute myeloid leukemia. Blood cancer discovery 2, 266
    Yang, W., Nagasawa, K., Munch, C., Xu, Y., Satterstrom, K., Jeong, S., Hayes, S.D., Jedrychowski, M.P., Vyas, F.S.,Zaganjor, E., 2016. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985-1000. e1021
    Ye, X., Niu X., Gu, L., Xu, Y., Li, Z., Yu, Y., Chen, Z., Lu, S., 2017. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8, 6984-6993
    Yin, J., Han, P., Song, M., Nielsen, M., Beach, T.G., Serrano, G.E., Liang, W.S., Caselli, R.J.,Shi, J., 2018. Amyloid-β increases tau by mediating sirtuin 3 in Alzheimer's disease. Mol. Neurobiol. 55, 8592-8601
    Yu, J., Sadhukhan, S., Noriega, L.G., Moullan, N., He, B., Weiss, R.S., Lin, H., Schoonjans, K.,Auwerx, J., 2013. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 1-7
    Yu, W., Dittenhafer-Reed, K.E.,Denu, J.M., 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287, 14078-14086
    Zeng, J., Jiang, M., Wu, X., Diao, F., Qiu, D., Hou, X., Wang, H., Li, L., Li, C.,Ge, J., 2018. SIRT 4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging cell 17, e12789
    Zhang, J., Xiang, H., Liu, J., Chen, Y., He, R.-R.,Liu, B., 2020. Mitochondrial Sirtuin 3:New emerging biological function and therapeutic target. Theranostics 10, 8315
    Zhang, J., Zhu, Y., Zhan, G., Fenik, P., Panossian, L., Wang, M.M., Reid, S., Lai, D., Davis, J.G.,Baur, J.A., 2014. Extended wakefulness:compromised metabolics in and degeneration of locus ceruleus neurons. J. Neurosci. 34, 4418-4431
    Zhang, Y., Bharathi, S.S., Rardin, M.J., Lu, J., Maringer, K.V., Sims-Lucas, S., Prochownik, E.V., Gibson, B.W.,Goetzman, E.S., 2017. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292, 10239-10249
    Zhang, Y., Bharathi, S.S., Rardin, M.J., Uppala, R., Verdin, E., Gibson, B.W.,Goetzman, E.S., 2015. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One 10, e0122297
    Zhong, L., D'Urso, A., Toiber, D., Sebastian, C., Henry, R.E., Vadysirisack, D.D., Guimaraes, A., Marinelli, B., Wikstrom, J.D.,Nir, T., 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280-293
    Zhou, L., Wang, F., Sun, R., Chen, X., Zhang, M., Xu, Q., Wang, Y., Wang, S., Xiong, Y.,Guan, K.L., 2016a. SIRT 5 promotes IDH 2 desuccinylation and G6 PD deglutarylation to enhance cellular antioxidant defense. EMBO reports 17, 811-822
    Zhu, J.,Thompson, C.B., 2019. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436-450
    Zhu, J., Wang, K.Z.,Chu, C.T., 2013. After the banquet:mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9, 1663-1676
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (243) PDF downloads (31) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return