5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 6
Jun.  2022
Turn off MathJax
Article Contents

Single-cell transcriptomic profiling of the hypothalamic median eminence during aging

doi: 10.1016/j.jgg.2022.01.001
Funds:

The work was supported by the National Key R&

D Program of China (2019YFA0801900 and 2018YFA0801104), the National Natural Science Foundation of China (31771131, 81891002, 31921002, and 32070972), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB32020000), the Hundred-Talent Program (Chinese Academy of Sciences), the Beijing Municipal Science &

Technology Commission (Z210010 and Z181100001518001), and the Baoding Technical Program (2141ZF027).

  • Received Date: 2021-10-04
  • Revised Date: 2021-12-31
  • Accepted Date: 2022-01-03
  • Publish Date: 2022-06-30
  • Aging is a slow and progressive natural process that compromises the normal functions of cells, tissues, organs, and systems. The aging of the hypothalamic median eminence (ME), a structural gate linking neural and endocrine systems, may impair hormone release, energy homeostasis, and central sensing of circulating molecules, leading to systemic and reproductive aging. However, the molecular and cellular features of ME aging remain largely unknown. Here, we describe the transcriptional landscape of young and middle-aged mouse ME at single-cell resolution, revealing the common and cell type-specific transcriptional changes with age. The transcriptional changes in cell-intrinsic programs, cell-cell crosstalk, and cell-extrinsic factors highlight five molecular features of ME aging and also implicate several potentially druggable targets at cellular, signaling, and molecular levels. Importantly, our results suggest that vascular and leptomeningeal cells may lead the asynchronized aging process among diverse cell types and drive local inflammation and cellular senescence via a unique secretome. Together, our study uncovers how intrinsic and extrinsic features of each cell type in the hypothalamic ME are changed by the aging process, which will facilitate our understanding of brain aging and provide clues for efficient anti-aging intervention at the middle-aged stage.
  • loading
  • Armingol, E., Officer, A., Harismendy, O., Lewis, N.E., 2021. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71-88
    Balogh, P., Adelman, E.R., Pluvinage, J.V., Capaldo, B.J., Freeman, K.C., Singh, S., Elagib, K.E., Nakamura, Y., Kurita, R., Sashida, G., et al., 2020. Runx3 levels in human hematopoietic progenitors are regulated by aging and dictate erythroid-myeloid balance. Haematologica 105, 905-913
    Barton, M., 2014. Aging and endothelin:Determinants of disease. Life Sci. 118, 97-109
    Barzilai, N., Huffman, D.M., Muzumdar, R.H., Bartke, A., 2012. The critical role of metabolic pathways in aging. Diabetes 61, 1315-1322
    Brawer, J.R., Walsh, R.J., 1982. Response of tanycytes to aging in the median eminence of the rat. Am. J. Anat. 163, 247-256
    Cai, D., Khor, S., 2019. "Hypothalamic microinflammation" paradigm in aging and metabolic diseases. Cell Metab. 30, 19-35
    Clarke, D.J.B., Kuleshov, M.V., Schilder, B.M., Torre, D., Duffy, M.E., Keenan, A.B., Lachmann, A., Feldmann, A.S., Gundersen, G.W., Silverstein, M.C., et al., 2018. Expression2kinases (x2k) web:Linking expression signatures to upstream cell signaling networks. Nucleic Acids Res. 46, W171-W179
    Colonna, M., Butovsky, O., 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441-468
    Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., Campisi, J., 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic ras and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868
    Craik, F., Salthouse, T., 2011. The handbook of aging and cognition
    Di Micco, R., Krizhanovsky, V., Baker, D., d'Adda di Fagagna, F., 2021. Cellular senescence in ageing:From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell. Biol. 22, 75-95
    Dulken, B.W., Buckley, M.T., Navarro Negredo, P., Saligrama, N., Cayrol, R., Leeman, D.S., George, B.M., Boutet, S.C., Hebestreit, K., Pluvinage, J.V., et al., 2019. Single-cell analysis reveals t cell infiltration in old neurogenic niches. Nature 571, 205-210
    Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., Santoro, A., 2018. Inflammaging:A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576-590
    Galatro, T.F., Holtman, I.R., Lerario, A.M., Vainchtein, I.D., Brouwer, N., Sola, P.R., Veras, M.M., Pereira, T.F., Leite, R.E.P., Moller, T., et al., 2017. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci. 20, 1162-1171
    Goyal, M.S., Vlassenko, A.G., Blazey, T.M., Su, Y., Couture, L.E., Durbin, T.J., Bateman, R.J., Benzinger, T.L., Morris, J.C., Raichle, M.E., 2017. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353-360 e353
    Grunewald, M., Kumar, S., Sharife, H., Volinsky, E., Gileles-Hillel, A., Licht, T., Permyakova, A., Hinden, L., Azar, S., Friedmann, Y., et al., 2021. Counteracting age-related vegf signaling insufficiency promotes healthy aging and extends life span. Science 373, 6554
    Hammond, T.R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A.J., Gergits, F., Segel, M., Nemesh, J., et al., 2019. Single-cell rna sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253-271 e256
    Han, H., Cho, J.W., Lee, S., Yun, A., Kim, H., Bae, D., Yang, S., Kim, C.Y., Lee, M., Kim, E., et al., 2018. Trrust v2:An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380-D386
    Helfer, G., Wu, Q.F., 2018. Chemerin:A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 238, R79-R94
    Hou, Y.J., Dan, X.L., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., Bohr, V.A., 2019. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565-581
    Huang, K.L., Marcora, E., Pimenova, A.A., Di Narzo, A.F., Kapoor, M., Jin, S.C., Harari, O., Bertelsen, S., Fairfax, B.P., Czajkowski, J., et al., 2017. A common haplotype lowers pu.1 expression in myeloid cells and delays onset of alzheimer's disease. Nat. Neurosci. 20, 1052-1061
    Jais, A., Solas, M., Backes, H., Chaurasia, B., Kleinridders, A., Theurich, S., Mauer, J., Steculorum, S.M., Hampel, B., Goldau, J., et al., 2016. Myeloid-cell-derived vegf maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882-895
    Jamaiyar, A., Wan, W., Janota, D.M., Enrick, M.K., Chilian, W.M., Yin, L., 2017. The versatility and paradox of gdf 11. Pharmacol Ther. 175, 28-34
    Jin, S.Q., Guerrero-Juarez, C.F., Zhang, L.H., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V., Nie, Q., 2021a. Inference and analysis of cell-cell communication using cellchat. Nat. Commun. 12, 1088
    Jin, W.N., Shi, K., He, W., Sun, J.H., Van Kaer, L., Shi, F.D.,Liu, Q., 2021b. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61-73
    Ko, C.Y., Chu, Y.Y., Narumiya, S., Chi, J.Y., Furuyashiki, T., Aoki, T., Wang, S.M., Chang, W.C., Wang, J.M., 2015. Ccaat/enhancer-binding protein delta/mir135a/thrombospondin 1 axis mediates pge2-induced angiogenesis in alzheimer's disease. Neurobiol. Aging. 36, 1356-1368
    Koopman, A.C.M., Taziaux, M., Bakker, J., 2017. Age-related changes in the morphology of tanycytes in the human female infundibular nucleus/median eminence. J. Neuroendocrinol. 29, 5
    Letterio, J.J., Roberts, A.B., 1998. Regulation of immune responses by tgf-beta. Annu. Rev. Immunol. 16, 137-161
    Litwack, G., 2011. Interleukins. Academic Press
    Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., 2013. The hallmarks of aging. Cell 153, 1194-1217
    Mao, K., Quipildor, G.F., Tabrizian, T., Novaj, A., Guan, F., Walters, R.O., Delahaye, F., Hubbard, G.B., Ikeno, Y., Ejima, K., et al., 2018. Late-life targeting of the igf-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 9, 2394
    Martinez, F., Cifuentes, M., Tapia, J.C., Nualart, F., 2019. The median eminence as the hypothalamic area involved in rapid transfer of glucose to the brain:Functional and cellular mechanisms. J. Mol. Med.(Berl)97, 1085-1097
    Milman, S., Huffman, D.M., Barzilai, N., 2016. The somatotropic axis in human aging:Framework for the current state of knowledge and future research. Cell Metab. 23, 980-989
    Minhas, P.S., Latif-Hernandez, A., McReynolds, M.R., Durairaj, A.S., Wang, Q., Rubin, A., Joshi, A.U., He, J.Q., Gauba, E., Liu, L., et al., 2021. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122-128
    Monsonego, A., Zota, V., Karni, A., Krieger, J.I., Bar-Or, A., Bitan, G., Budson, A.E., Sperling, R., Selkoe, D.J., Weiner, H.L., 2003. Increased t cell reactivity to amyloid beta protein in older humans and patients with alzheimer disease. J. Clin. Invest. 112, 415-422
    Mu, W., Li, S., Xu, J., Guo, X., Wu, H., Chen, Z., Qiao, L., Helfer, G., Lu, F., Liu, C., et al., 2021. Hypothalamic rax (+) tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat. Commun. 12, 2288
    Nativio, R., Donahue, G., Berson, A., Lan, Y., Amlie-Wolf, A., Tuzer, F., Toledo, J.B., Gosai, S.J., Gregory, B.D., Torres, C., et al., 2018. Dysregulation of the epigenetic landscape of normal aging in alzheimer's disease. Nat. Neurosci. 21, 497-505
    Perry, V.H., Holmes, C., 2014. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10, 217-224
    Pluvinage, J.V., Wyss-Coray, T., 2020. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat. Rev.Neurosci. 21, 298-298
    Poggioli, T., Vujic, A., Yang, P., Macias-Trevino, C., Uygur, A., Loffredo, F.S., Pancoast, J.R., Cho, M., Goldstein, J., Tandias, R.M., et al., 2016. Circulating growth differentiation factor 11/8 levels decline with age. Circ. Res. 118, 29-37
    Prevot, V., Dehouck, B., Sharif, A., Ciofi, P., Giacobini, P., Clasadonte, J., 2018. The versatile tanycyte:A hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333-368
    Rai, M., Coleman, Z., Curley, M., Nityanandam, A., Platt, A., Robles-Murguia, M., Jiao, J., Finkelstein, D., Wang, Y.D., Xu, B., et al., 2021. Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metab. 33, 1137-1154 e1139
    Ramalho, A.F., Bombassaro, B., Dragano, N.R., Solon, C., Morari, J., Fioravante, M., Barbizan, R., Velloso, L.A., Araujo, E.P., 2018. Dietary fats promote functional and structural changes in the median eminence blood/spinal fluid interface-the protective role for bdnf. J. Neuroinflammation 15, 10
    Ren, R., Ocampo, A., Liu, G.H., Izpisua Belmonte, J.C., 2017. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 26, 460-474
    Rozanov, L., Ravichandran, M., Grigolon, G., Zanellati, M.C., Mansfeld, J., Zarse, K., Barzilai, N., Atzmon, G., Fischer, F., Ristow, M., 2020. Redox-mediated regulation of aging and healthspan by an evolutionarily conserved transcription factor hlh-2/tcf3/e2a. Redox. Biol. 32, 101448
    Santulli, G., 2014. Angiopoietin-like proteins:A comprehensive look. Front. Endocrinol.(Lausanne)5, 4
    Schaum, N., Lehallier, B., Hahn, O., Palovics, R., Hosseinzadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., Zardeneta, M.E., et al., 2020. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602
    Schipper, H.M., Song, W., Tavitian, A., Cressatti, M., 2019. The sinister face of heme oxygenase-1 in brain aging and disease. Prog. Neurobiol. 172, 40-70
    Sinha, M., Jang, Y.C., Oh, J., Khong, D., Wu, E.Y., Manohar, R., Miller, C., Regalado, S.G., Loffredo, F.S., Pancoast, J.R., et al., 2014. Restoring systemic gdf11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649-652
    Szulwach, K.E., Li, X., Li, Y., Song, C.X., Wu, H., Dai, Q., Irier, H., Upadhyay, A.K., Gearing, M., Levey, A.I., et al., 2011. 5-hmc-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607-1616
    Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., Kirkland, J.L., 2013. Cellular senescence and the senescent secretory phenotype:Therapeutic opportunities. J. Clin. Invest. 123, 966-972
    Wehrspaun, C.C., Haerty, W., Ponting, C.P., 2015. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol. Aging 36, 2443 e2449-2443 e2420
    Ximerakis, M., Lipnick, S.L., Innes, B.T., Simmons, S.K., Adiconis, X., Dionne, D., Mayweather, B.A., Nguyen, L., Niziolek, Z., Ozek, C., et al., 2019. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696-1708
    Xu, L., Ma, X., Verma, N., Perie, L., Pendse, J., Shamloo, S., Marie Josephson, A., Wang, D., Qiu, J., Guo, M., et al., 2020. Ppargamma agonists delay age-associated metabolic disease and extend longevity. Aging Cell 19, e13267
    Yang, A.C., Stevens, M.Y., Chen, M.B., Lee, D.P., Stahli, D., Gate, D., Contrepois, K., Chen, W., Iram, T., Zhang, L., et al., 2020. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425-430
    Yeoman, M., Scutt, G., Faragher, R., 2012. Insights into cns ageing from animal models of senescence. Nat. Rev. Neurosci. 13, 435-445
    Yin, W., Gore, A.C., 2010. The hypothalamic median eminence and its role in reproductive aging. Ann. N. Y. Acad. Sci. 1204, 113-122
    Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., Cai, D., 2013. Hypothalamic programming of systemic ageing involving ikk-beta, nf-kappab and gnrh. Nature 497, 211-216
    Zhang, Y.H., Xu, M., Shi, X., Sun, X.L., Mu, W., Wu, H., Wang, J., Li, S., Su, P., Gong, L., et al., 2021. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 28, 1483-1499 e1488
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (518) PDF downloads (202) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return