[1] |
Atila, C., Loughrey, P.B., Garrahy, A., Winzeler, B., Refardt, J., Gildroy, P., Hamza, M., Pal, A., Verbalis, J.G., Thompson, C.J., et al. (2022). Central diabetes insipidus from a patient's perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey. Lancet Diabetes Endocrinol 10, 700-709.
|
[2] |
Aulinas, A., Plessow, F., Asanza, E., Silva, L., Marengi, D.A., Fan, W., Abedi, P., Verbalis, J., Tritos, N.A., Nachtigall, L., et al. (2019). Low Plasma Oxytocin Levels and Increased Psychopathology in Hypopituitary Men With Diabetes Insipidus. The Journal of clinical endocrinology and metabolism 104, 3181-3191.
|
[3] |
Christ-Crain, M., Bichet, D.G., Fenske, W.K., Goldman, M.B., Rittig, S., Verbalis, J.G., and Verkman, A.S. (2019). Diabetes insipidus. Nat Rev Dis Primers 5, 54.
|
[4] |
Christ-Crain, M., Winzeler, B., and Refardt, J. (2021). Diagnosis and management of diabetes insipidus for the internist: an update. J Intern Med 290, 73-87.
|
[5] |
Donaldson, Z.R., and Young, L.J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900-904.
|
[6] |
Feng, C., Wang, X., Shi, H., Yan, Q., Zheng, M., Li, J., Zhang, Q., Qin, Y., Zhong, Y., Mi, J., et al. (2018). Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer. J Genet Genomics 45, 47-50.
|
[7] |
Garcia-Castano, A., Madariaga, L., Perez de Nanclares, G., Vela, A., Rica, I., Gaztambide, S., Martinez, R., Martinez de LaPiscina, I., Urrutia, I., Aguayo, A., et al. (2020). Forty-One Individuals With Mutations in the AVP-NPII Gene Associated With Familial Neurohypophyseal Diabetes Insipidus. J Clin Endocrinol Metab 105(4):1112-1118.
|
[8] |
Gudinchet, F., Brunelle, F., Barth, M.O., Taviere, V., Brauner, R., Rappaport, R., and Lallemand, D. (1989). MR imaging of the posterior hypophysis in children. AJR Am J Roentgenol 153, 351-354.
|
[9] |
Hong, H., Zhao, Z., Huang, X., Guo, C., Zhao, H., Wang, G.D., Zhang, Y.P., Zhao, J.P., Shi, J., Wu, Q.F., et al. (2022). Comparative Proteome and Cis-Regulatory Element Analysis Reveals Specific Molecular Pathways Conserved in Dog and Human Brains. Mol Cell Proteomics 21, 100261.
|
[10] |
Mahia, J., and Bernal, A. (2021). Animal models for diabetes insipidus. Handb Clin Neurol 181, 275-288.
|
[11] |
Russell, T.A., Ito, M., Ito, M., Yu, R.N., Martinson, F.A., Weiss, J., and Jameson, J.L. (2003). A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. Journal of Clinical Investigation 112, 1697-1706.
|
[12] |
Teshima, T., Hara, Y., Masuda, H., Taoda, T., Nezu, Y., Harada, Y., Yogo, T., Hasegawa, D., Orima, H., Osamura, R.Y., et al. (2008). Relationship between arginine vasopressin and high signal intensity in the pituitary posterior lobe on T1-weighted MR images in dogs. The Journal of veterinary medical science 70, 693-699.
|
[13] |
Tsai, K.L., Clark, L.A., and Murphy, K.E. (2007). Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome 18, 444-451.
|
[14] |
Turkkahraman, D., Saglar, E., Karaduman, T., and Mergen, H. (2015). AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus. Pituitary 18, 898-904.
|
[15] |
Valtin, H., and Schroeder, H.A. (1964). Familial Hypothalamic Diabetes Insipidus in Rats (Brattleboro Strain). Am J Physiol 206, 425-430.
|
[16] |
Yang, H., Yan, K., Wang, L., Gong, F., Jin, Z., and Zhu, H. (2019). Autosomal dominant familial neurohypophyseal diabetes insipidus caused by a novel nonsense mutation in AVP-NPII gene. Exp Ther Med 18, 1309-1314.
|
[17] |
Zhao, H., Zhao, J., Wu, D., Sun, Z., Hua, Y., Zheng, M., Liu, Y., Yang, Q., Huang, X., Li, Y., et al. (2021). Dogs lacking Apolipoprotein E show advanced atherosclerosis leading to apparent clinical complications. Sci China Life Sci 65(7), 1342-1356.
|
[1] | Boxun Zhang, Xuan Zhang, Zhen Luo, Jixiang Ren, Xiaotong Yu, Haiyan Zhao, Yitian Wang, Wenhui Zhang, Weiwei Tian, Xiuxiu Wei, Qiyou Ding, Haoyu Yang, Zishan Jin, Xiaolin Tong, Jun Wang, Linhua Zhao. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.005 |
[2] | Guosheng Ma, Xiaojing Zhao, Xinyi Shentu, Liye Zhang. Point mutations of homologs as an adaptive solution to the gene loss[J]. Journal of Genetics and Genomics, 2023, 50(7): 511-518. doi: 10.1016/j.jgg.2023.02.012 |
[3] | Chao Fang, Haiping Du, Lingshuang Wang, Baohui Liu, Fanjiang Kong. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.09.004 |
[4] | Yue Wu, Jun Zhou, Yunfan Yang. Peripheral and central control of obesity by primary cilia[J]. Journal of Genetics and Genomics, 2023, 50(5): 295-304. doi: 10.1016/j.jgg.2022.12.006 |
[5] | Ziyin Zhang, Yue Gao, Zhuo-Xian Meng. Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes[J]. Journal of Genetics and Genomics, 2022, 49(4): 316-328. doi: 10.1016/j.jgg.2022.03.002 |
[6] | Chensi Yao, Xiaowen Gou, Chuanxi Tian, Lijuan Zhou, Rui Hao, Li Wan, Zeyu Wang, Min Li, Xiaolin Tong. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2022.12.002 |
[7] | Daijing Sun, Jie Weng, Yuhao Dong, Yan Jiang. 3D genome organization in the central nervous system, implications for neuropsychological disorders[J]. Journal of Genetics and Genomics, 2021, 48(12): 1045-1056. doi: 10.1016/j.jgg.2021.06.017 |
[8] | Xiaoqing Li, Jiayong Zheng, Xiuling Ma, Bing Zhang, Jinyang Zhang, Wenhuan Wang, Congcong Sun, Yeping Wang, Jianqiong Zheng, Haiying Chen, Jiejing Tao, Hai Wang, Fengyi Zhang, Jinfeng Wang, Hongping Zhang. The oral microbiome of pregnant women facilitates gestational diabetes discrimination[J]. Journal of Genetics and Genomics, 2021, 48(1): 32-39. doi: 10.1016/j.jgg.2020.11.006 |
[9] | Zhuoma Basang, Shixuan Zhang, La Yang, Deji Quzong, Yi Li, Yanyun Ma, Meng Hao, WeiLin Pu, Xiaoyu Liu, Hongjun Xie, Meng Liang, Jiucun Wang, Qiangba Danzeng. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia[J]. Journal of Genetics and Genomics, 2021, 48(10): 928-935. doi: 10.1016/j.jgg.2021.05.015 |
[10] | Jun Yao, Huasha Zeng, Min Zhang, Qinjun Wei, Ying Wang, Haiyuan Yang, Yajie Lu, Rongfeng Li, Qiang Xiong, Lining Zhang, Zhibin Chen, Guangqian Xing, Xin Cao, Yifan Dai. OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia[J]. Journal of Genetics and Genomics, 2019, 46(8): 379-387. doi: 10.1016/j.jgg.2019.06.006 |
[11] | Chuanbo Huang, Weili Yang, Junpei Wang, Yuan Zhou, Bin Geng, Georgios Kararigas, Jichun Yang, Qinghua Cui. The DrugPattern tool for drug set enrichment analysis and its prediction for beneficial effects of oxLDL on type 2 diabetes[J]. Journal of Genetics and Genomics, 2018, 45(7): 389-397. doi: 10.1016/j.jgg.2018.07.002 |
[12] | Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007 |
[13] | Jian Zhao, Jing Wu, Tianyi Xu, Qichang Yang, Junhao He, Xiaofeng Song. IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features[J]. Journal of Genetics and Genomics, 2018, 45(7): 403-406. doi: 10.1016/j.jgg.2018.07.006 |
[14] | Yueqin Guo, Ying Feng, Zhouhua Li, Xinhua Lin. Drosophila heparan sulfate 3-O sulfotransferase B Null Mutant Is Viable and Exhibits No Defects in Notch Signaling[J]. Journal of Genetics and Genomics, 2014, 41(7): 369-378. doi: 10.1016/j.jgg.2014.04.006 |
[15] | Qing Wang, Xiuli Gong, Zhijuan Gong, Xiaoyie Ren, Zhaorui Ren, Shuzhen Huang, Yitao Zeng. The Mesenchymal Stem Cells Derived from Transgenic Mice Carrying Human Coagulation Factor VIII Can Correct Phenotype in Hemophilia A Mice[J]. Journal of Genetics and Genomics, 2013, 40(12): 617-628. doi: 10.1016/j.jgg.2013.11.002 |
[16] | Mustafa Abdo Saif Dehwah, Aimin Xu, Qingyang Huang. MicroRNAs and Type 2 Diabetes/Obesity[J]. Journal of Genetics and Genomics, 2012, 39(1): 11-18. doi: 10.1016/j.jgg.2011.11.007 |
[17] | Yuan Chen, Yun Ding, Zuming Zhang, Wen Wang, Jun-Yuan Chen, Naoto Ueno, Bingyu Mao. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes[J]. Journal of Genetics and Genomics, 2011, 38(12): 577-584. doi: 10.1016/j.jgg.2011.10.004 |
[18] | Xiao-Yan You, Xu Guo, Hua-Jun Zheng, Ming-Jiang Zhang, Li-Jun Liu, Yong-Qiang Zhu, Baoli Zhu, Sheng-Yue Wang, Guo-Ping Zhao, Ansgar Poetsch, Cheng-Ying Jiang, Shuang-Jiang Liu. Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation[J]. Journal of Genetics and Genomics, 2011, 38(6): 243-252. doi: 10.1016/j.jgg.2011.04.006 |
[19] | Yabing Wang, Di Zhang, Yun Liu, Yifeng Yang, Teng Zhao, Jie Xu, Sheng Li, Zuofeng Zhang, Guoyin Feng, Lin He, He Xu. Association study of the single nucleotide polymorphisms in adiponectin-associated genes with type 2 diabetes in Han Chinese[J]. Journal of Genetics and Genomics, 2009, 36(7): 417-423. doi: 10.1016/S1673-8527(08)60131-9 |
[20] | Tianxin Sheng, Kangjuan Yang. Adiponectin and its association with insulin resistance and type 2 diabetes[J]. Journal of Genetics and Genomics, 2008, 35(6): 321-326. doi: 10.1016/S1673-8527(08)60047-8 |
1. | Shi, W., Jin, E., Fang, L. et al. VDGE: a data repository of variation database for gene-edited animals across multiple species. Nucleic Acids Research, 2025, 53(D1): D1250-D1260. doi:10.1093/nar/gkae956 |