5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 8
Aug.  2023
Turn off MathJax
Article Contents

Histone methylation readers MRG1/MRG2 interact with the transcription factor TCP14 to positively modulate cytokinin sensitivity in Arabidopsis

doi: 10.1016/j.jgg.2023.02.011
Funds:

This work was supported by grants from the National Natural Science Foundation of China (31970530, 31930017, and 31671263).

  • Received Date: 2022-10-24
  • Revised Date: 2023-02-13
  • Accepted Date: 2023-02-15
  • Publish Date: 2023-03-02
  • Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thaliana HISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.
  • loading
  • An, Z., Yin, L., Liu, Y., Peng, M., Shen, W.H., Dong, A., 2020. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in finetuning Arabidopsis flowering time. Plant J. 103, 1010-1024.
    Bertram, M.J., Pereira-Smith, O.M., 2001. Conservation of the MORF4 related gene family:identification of a new chromo domain subfamily and novel protein motif. Gene 266, 111-121.
    Bu, Z., Yu, Y., Li, Z., Liu, Y., Jiang, W., Huang, Y., Dong, A.W., 2014. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet. 10, e1004617.
    Camoirano, A., Arce, A.L., Ariel, F.D., Alem, A.L., Gonzalez, D.H., Viola, I.L., 2020. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. J. Exp. Bot. 71, 5438-5453.
    Chandler, J.W., Werr, W., 2015. Cytokinineauxin crosstalk in cell type specification. Trends Plant Sci. 20, 291-300.
    Chen, Q., Chen, X., Wang, Q., Zhang, F., Lou, Z., Zhang, Q., Zhou, D.X., 2013. Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet. 9, e1003239.
    Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A.D., Muino, J.M., Cutri, L., Dornelas, M.C., et al., 2012. Arabidopsis Class I and Class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 159, 1511-1523.
    Efroni, I., Han, S.K., Kim, H.J., Wu, M.F., Steiner, E., Birnbaum, K.D., Hong, J.C., Eshed, Y., Wagner, D., 2013. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 24, 438-445.
    Ferrero, L.V., Gastaldi, V., Ariel, F.D., Viola, I.L., Gonzalez, D.H., 2021. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Mol. Biol. 105, 147-159.
    Furuta, K., Kubo, M., Sano, K., Demura, T., Fukuda, H., Liu, Y.G., Shibata, D., Kakimoto, T., 2011. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol. 52, 618-628.
    Guo, Z., Li, Z., Liu, Y., An, Z., Peng, M., Shen, W.H., Dong, A., Yu, Y., 2020. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. New Phytol. 227, 1453-1466.
    Hay, A., Barkoulas, M., Tsiantis, M., 2004. Pinning down the connections:transcription factors and hormones in leaf morphogenesis. Curr. Opin. Plant Biol. 7, 575-581.
    Huang, X., Zhang, X., Gong, Z., Yang, S., Shi, Y., 2017. ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. Plant J. 89, 354-365.
    Hutchison, C.E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M.W., Maxwell, B.B., Perdue, T.D., Schaller, G.E., Alonso, J.M., et al., 2006. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18, 3073-3087.
    Hwang, I., Chen, H.C., Sheen, J., 2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500-515.
    Jeon, J., Kim, J., 2013. Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol. 161, 408-424.
    Jin, J., Shi, J., Liu, B., Liu, Y., Huang, Y., Yu, Y., Dong, A., 2015. MORF-RELATED GENE702, a reader protein of trimethylated histone H3 lysine 4 and histone h3 lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice. Plant Physiol. 168, 1275-1285.
    Joshi, A.A., Struhl, K., 2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971-978.
    Karaaslan, E.S., Wang, N., Faiss, N., Liang, Y., Montgomery, S.A., Laubinger, S., Berendzen, K.W., Berger, F., Breuninger, H.Liu, C., 2020. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. Nat. Plants 6, 1250-1261.
    Kieber, J.J., Schaller, G.E., 2014. Cytokinins. Arabidopsis Book 12, e0168.
    Kieber, J.J., Schaller, G.E., 2018. Cytokinin signaling in plant development. Development 145, dev149344.
    Kieffer, M., Master, V., Waites, R., Davies, B., 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 68, 147-158.
    Kubo, M., Furuta, K., Demura, T., Fukuda, H., Liu, Y.G., Shibata, D., Kakimoto, T., 2011. The CKH1/EER4 gene encoding a TAF12-like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana. Plant Cell Physiol. 52, 629-637.
    Latrasse, D., Benhamed, M., Henry, Y., Domenichini, S., Kim, W., Zhou, D.X., Delarue, M., 2008. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol. 8, 121.
    Li, B., Carey, M., Workman, J.L., 2007. The role of chromatin during transcription. Cell 128, 707-719.
    Li, D., Zhang, H., Mou, M., Chen, Y., Xiang, S., Chen, L., Yu, D., 2019. Arabidopsis Class II TCP transcription factors integrate with the FTeFD module to control flowering. Plant Physiol. 181, 97-111.
    Li, J., Nie, X., Tan, J.L., Berger, F., 2013. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 15479-15484.
    Li, S., 2015. The Arabidopsis thaliana TCP transcription factors:A broadening horizon beyond development. Plant Signal. Behav. 10, e1044192.
    Li, S., Zachgo, S., 2013. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thalian. Plant J. 76, 901-913.
    Liu, B., Liu, Y., Wang, B., Luo, Q., Shi, J., Gan, J., Shen, W.H., Yu, Y., Dong, A., 2019. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nat. Commun. 10, 2999.
    Liu, Y., Wu, H., Yu, Y., Huang, Y., 2016. Structural studies on MRG701 chromodomain reveal a novel dimerization interface of MRG proteins in green plants. Protein Cell 7, 792-803.
    Liu, Z., Yuan, L., Song, X., Yu, X., Sundaresan, V., 2017. AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development. J. Exp. Bot. 68, 3365-3373.
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative pcr and the 2eDDCT method. Methods 25, 402-408.
    Lucero, L.E., Uberti-Manassero, N.G., Arce, A.L., Colombatti, F., Alemano, S.G., Gonzalez, D.H., 2015. TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant J. 84, 267-282.
    Mahonen, A.P., Bishopp, A., Higuchi, M., Nieminen, K.M., Kinoshita, K., Tormakangas, K., Ikeda, Y., Oka, A., Kakimoto, T., Helariutta, Y., 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311, 94-98.
    Martin-Trillo, M., Cubas, P., 2010. TCP genes:a family snapshot ten years later. Trends Plant Sci. 15, 31-39.
    Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., Schaller, G.E., 2005. Multiple Type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17, 3007-3018.
    Nicolas, M., Cubas, P., 2016. TCP factors:new kids on the signaling block. Curr. Opin. Plant Biol. 33, 33-41.
    Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., Ueguchi, C., 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365-1377.
    Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., et al., 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23, 2169-2183.
    Peng, M., Li, Z., Zhou, N., Ma, M., Jiang, Y., Dong, A., Shen, W.H., Li, L., 2018. Linking PHYTOCHROME-INTERACTING FACTOR to histone modification in plant shade avoidance. Plant Physiol. 176, 1341-1351.
    Potter, K.C., Wang, J., Schaller, G.E., Kieber, J.J., 2018. Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nat. Plants 4, 1102-1111.
    Resentini, F., Felipo-Benavent, A., Colombo, L., Blazquez, M.A., Alabadí, D., Masiero, S., 2015. TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana. Mol. Plant 8, 482-485.
    Saleh, A., Alvarez-Venegas, R., Avramova, Z., 2008. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in arabidopsis plants. Nat. Protoc. 3, 1018-1025.
    Schaller, G.E., Street, I.H., Kieber, J.J., 2014. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 21, 7-15.
    Steiner, E., Efroni, I., Gopalraj, M., Saathoff, K., Tseng, T.S., Kieffer, M., Eshed, Y., Olszewski, N., Weiss, D., 2012a. The Arabidopsis O-linked N-Acetylglucosamine transferase SPINDLY interacts with Class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24, 96-108.
    Steiner, E., Livne, S., Kobinson-Katz, T., Tal, L., Pri-Tal, O., Mosquna, A., Tarkowska, D., Mueller, B., Tarkowski, P., Weiss, D., 2016. The putative O-linked N-acetylglucosamine transferase SPINDLY inhibits Class I TCP proteolysis to promote sensitivity to cytokinin. Plant Physiol. 171, 1485-1494.
    Steiner, E., Yanai, O., Efroni, I., Ori, N., Eshed, Y., Weiss, D., 2012b. Class I TCPs modulate cytokinin-induced branching and meristematic activity in tomato. Plant Signal. Behav. 7, 807-810.
    Suzuki, T., Ishikawa, K., Yamashino, T., Mizuno, T., 2002. An Arabidopsis histidinecontaining phosphotransfer (HPt) factor implicated in phosphorelay signal transduction:overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol. 43, 123-129.
    Tian, L., Chen, Z.J., 2001. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. U. S. A. 98, 200-205.
    To, J.P., Deruere, J., Maxwell, B.B., Morris, V.F., Hutchison, C.E., Ferreira, F.J., Schaller, G.E., Kieber, J.J., 2007. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19, 3901-3914.
    To, J.P., Haberer, G., Ferreira, F.J., Deruere, J., Mason, M.G., Schaller, G.E., Alonso, J.M., Ecker, J.R., Kieber, J.J., 2004. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658-671.
    Wang, X., Gao, J., Zhu, Z., Dong, X., Wang, X., Ren, G., Zhou, X., Kuai, B., 2015. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana. Plant J. 82, 151-162.
    Wang, Z., Cao, H., Sun, Y., Li, X., Chen, F., Carles, A., Li, Y., Ding, M., Zhang, C., Deng, X., et al., 2013. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell 25, 149-166.
    Werner, T., Schmulling, T., 2009. Cytokinin action in plant development. Curr. Opin. Plant Biol. 12, 527-538.
    Xiao, J., Lee, U.S., Wagner, D., 2016. Tug of war:adding and removing histone lysine methylation in Arabidopsis. Curr. Opin. Plant Biol. 34, 41-53.
    Xiao, J., Zhang, H., Xing, L., Xu, S., Liu, H., Chong, K., Xu, Y., 2013. Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J. Plant Physiol. 170, 444-451.
    Xie, M., Chen, H., Huang, L., O'Neil, R.C., Shokhirev, M.N., Ecker, J.R., 2018. A BARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat. Commun. 9, 1604.
    Xu, Y., Gan, E.S., Zhou, J., Wee, W.Y., Zhang, X., Ito, T., 2014. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 42, 10960-10974.
    Yang, X., Yan, J., Zhang, Z., Lin, T., Xin, T., Wang, B., Wang, S., Zhao, J., Zhang, Z., Lucas, W.J., et al., 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nat. Plants 6, 809-822.
    Yoo, S.D., Cho, Y.H., Sheen, J., 2007. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572.
    Zdarska, M., Dobisova, T., Gelova, Z., Pernisova, M., Dabravolski, S., Hejatko, J., 2015. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J. Exp. Bot. 66, 4913-4931.
    Zhou, Y., Zhang, D., An, J., Yin, H., Fang, S., Chu, J., Zhao, Y., Li, J., 2018. TCP transcription factors regulate shade avoidance via directly mediating the expression of both PHYTOCHROME INTERACTING FACTORs and auxin biosynthetic genes. Plant Physiol. 176, 1850-1861.
    Zubo, Y.O., Blakley, I.C., Yamburenko, M.V., Worthen, J.M., Street, I.H., FrancoZorrilla,J.M.,Zhang,W.,Hill,K.,Raines, T.,Solano,R., etal.,2017. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E5995eE6004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (228) PDF downloads (25) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return