5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

Correction of a CADASIL point mutation using adenine base editors in hiPSCs and blood vessel organoids

doi: 10.1016/j.jgg.2023.04.013
Funds:  This study was funded by the National Natural Science Foundation of China (31971365), the Guangdong Basic and Applied Basic Research Foundation (2020B1515120090), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2019BT02Y276).
  • Received Date: 2022-11-15
  • Revised Date: 2023-04-22
  • Accepted Date: 2023-04-25
  • Available Online: 2023-05-08
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic small vessel disease caused by mutations in the NOTCH3 gene. However, the pathogenesis of CADASIL remains unclear, and patients have limited treatment options. Here, we use human induced pluripotent stem cells (hiPSCs) generated from the peripheral blood mononuclear cells (PBMCs) of a patient with CADASIL carrying a heterozygous NOTCH3 mutation (c.1261C>T, p.R421C) to develop a disease model. The correction efficiency of different adenine base editors (ABEs) is tested using the HEK293T-NOTCH3 reporter cell line. ABEmax is selected based on its higher efficiency and minimization of predicted off-target effects. Vascular smooth muscle cells (VSMCs) differentiated from CADASIL hiPSCs show NOTCH3 deposition and abnormal actin cytoskeleton structure, and the abnormalities are recovered in corrected hiPSC-derived VSMCs. Furthermore, CADASIL blood vessel organoids generated for in vivo modeling show altered expression of genes related to disease phenotypes, including the downregulation of cell adhesion, extracellular matrix organization, and vessel development. The dual adeno-associated virus (AAV) split-ABEmax system is applied to the genome editing of vascular organoids with an average editing efficiency of 8.82%. Collectively, we present potential genetic therapeutic strategies for patients with CADASIL using blood vessel organoids and the dual AAV split-ABEmax system.
  • loading
  • [1]
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    [2]
    Balakrishnan, B.,Jayandharan, G.R., 2014. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr. Gene Ther. 14, 86-100.
    [3]
    Chen, S., Ni, W., Yin, X.Z., Liu, H.Q., Lu, C., Zheng, Q.J., Zhao, G.X., Xu, Y.F., Wu, L., Zhang, L., et al., 2017. Clinical features and mutation spectrum in Chinese patients with CADASIL: A multicenter retrospective study. CNS Neurosci. Ther. 23, 707-716.
    [4]
    Chen, Y.X., Zhi, S.Y., Liu, W.L., Wen, J.K., Hu, S.H., Cao, T.Q., Sun, H.W., Li, Y., Huang, L., Liu, Y.Z., et al., 2020. Development of Highly Efficient Dual-AAV Split Adenosine Base Editor for In Vivo Gene Therapy. Small Methods 4.
    [5]
    Craggs, L.J.L., Fenwick, R., Oakley, A.E., Ihara, M.,Kalaria, R.N., 2015. Immunolocalization of platelet-derived growth factor receptor- (PDGFR-) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropath. Appl. Neuro. 41, 557-570.
    [6]
    Di Donato, I., Bianchi, S., De Stefano, N., Dichgans, M., Dotti, M.T., Duering, M., Jouvent, E., Korczyn, A.D., Lesnik-Oberstein, S.A.J., Malandrini, A., et al., 2017. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. Bmc Med 15, 41.
    [7]
    Fernandez-Susavila, H., Mora, C., Aramburu-Nunez, M., Quintas-Rey, R., Arias, S., Collado, M., Lopez-Arias, E., Sobrino, T., Castillo, J., Dell'Era, P., et al., 2018. Generation and characterization of the human iPSC line IDISi001-A isolated from blood cells of a CADASIL patient carrying a NOTCH3 mutation. Stem Cell Res. 28, 16-20.
    [8]
    Greenberg, B., Yaroshinsky, A., Zsebo, K.M., Butler, J., Felker, G.M., Voors, A.A., Rudy, J.J., Wagner, K.,Hajjar, R.J., 2014. Design of a Phase 2b Trial of Intracoronary Administration of AAV1/SERCA2a in Patients With Advanced Heart Failure The CUPID 2 Trial (Calcium Up-Regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease Phase 2b). Jacc-Heart Fail 2, 84-92.
    [9]
    Gui, L., Dash, B.C., Luo, J., Qin, L., Zhao, L., Yamamoto, K., Hashimoto, T., Wu, H., Dardik, A., Tellides, G., et al., 2016. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102, 120-129.
    [10]
    Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A.,Betsholtz, C., 1999. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047-3055.
    [11]
    Jalil, S., Keskinen, T., Maldonado, R., Sokka, J., Trokovic, R., Otonkoski, T.,Wartiovaara, K., 2021. Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Rep. 16, 3064-3075.
    [12]
    Jin, S., Hansson, E.M., Tikka, S., Lanner, F., Sahlgren, C., Farnebo, F., Baumann, M., Kalimo, H.,Lendahl, U., 2008. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ. Res. 102, 1483-1491.
    [13]
    Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cecillion, M., Marechal, E., et al., 1996. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707-710.
    [14]
    Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cecillion, M., Marechal, E., et al., 1997. Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann. N. Y. Acad. Sci. 826, 213-217.
    [15]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z.,Joung, J.K., 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495.
    [16]
    Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A.,Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
    [17]
    LaPoint, S.F., Patel, U.,Rubio, A., 2000. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Adv. Anat. Pathol. 7, 307-321.
    [18]
    Lesnik Oberstein, S.A., van den Boom, R., van Buchem, M.A., van Houwelingen, H.C., Bakker, E., Vollebregt, E., Ferrari, M.D., Breuning, M.H., Haan, J.,Dutch, C.R.G., 2001. Cerebral microbleeds in CADASIL. Neurology 57, 1066-1070.
    [19]
    Li, W.F., Shi, L.L., Hu, B., Hong, Y.M., Zhang, H., Li, X.,Zhang, Y.L., 2021. Mesenchymal Stem Cell-Based Therapy for Stroke: Current Understanding and Challenges. Front Cell Neurosci 15, 628940.
    [20]
    Liang, P., Xie, X., Zhi, S., Sun, H., Zhang, X., Chen, Y., Chen, Y., Xiong, Y., Ma, W., Liu, D., et al., 2019. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67.
    [21]
    Ling, C., Liu, Z.P., Song, M., Zhang, W.Q., Wang, S., Liu, X.Q., Ma, S., Sun, S.H., Fu, L.N., Chu, Q., et al., 2019. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 10, 249-271.
    [22]
    Lisowski, L., Dane, A.P., Chu, K., Zhang, Y., Cunningham, S.C., Wilson, E.M., Nygaard, S., Grompe, M., Alexander, I.E.,Kay, M.A., 2014. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382-386.
    [23]
    Luo, J.S., Qin, L.F., Zhao, L.P., Gui, L.Q., Ellis, M.W., Huang, Y., Kural, M.H., Clark, J.A., Ono, S., Wang, J., et al., 2020. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 26, 251-261.
    [24]
    Markus, H.S., Martin, R.J., Simpson, M.A., Dong, Y.B., Ali, N., Crosby, A.H.,Powell, J.F., 2002. Diagnostic strategies in CADASIL. Neurology 59, 1134-1138.
    [25]
    Massaro, G., Mattar, C.N.Z., Wong, A.M.S., Sirka, E., Buckley, S.M.K., Herbert, B.R., Karlsson, S., Perocheau, D.P., Burke, D., Heales, S., et al., 2018. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 24, 1317-1323.
    [26]
    Moreno, A.M., Fu, X., Zhu, J., Katrekar, D., Shih, Y.R.V., Marlett, J., Cabotaje, J., Tat, J., Naughton, J., Lisowski, L., et al., 2018. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Mol. Ther. 26, 1818-1827.
    [27]
    Patsch, C., Challet-Meylan, L., Thoma, E.C., Urich, E., Heckel, T., O'Sullivan, J.F., Grainger, S.J., Kapp, F.G., Sun, L., Christensen, K., et al., 2015. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17, 994-1003.
    [28]
    Pleger, S.T., Most, P., Boucher, M., Soltys, S., Chuprun, J.K., Pleger, W., Gao, E.H., Dasgupta, A., Rengo, G., Remppis, A., et al., 2007. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115, 2506-2515.
    [29]
    Reardon, S.,Cyranoski, D., 2014. Japan stem-cell trial stirs envy. Nature 513, 287-288.
    [30]
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
    [31]
    Ruchoux, M.M., Chabriat, H., Bousser, M.G., Baudrimont, M.,Tournier-Lasserve, E., 1994. Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25, 2291-2292.
    [32]
    Ruchoux, M.M.,Maurage, C.A., 1998. Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol. Appl. Neurobiol. 24, 60-65.
    [33]
    Rutten, J.W., Dauwerse, H.G., Gravesteijn, G., van Belzen, M.J., van der Grond, J., Polke, J.M., Bernal-Quiros, M.,Oberstein, S.A.J.L., 2016a. Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann. Clin. Transl. Neur. 3, 844-853.
    [34]
    Rutten, J.W., Dauwerse, H.G., Peters, D.J.M., Goldfarb, A., Venselaar, H., Haffner, C., van Ommen, G.J.B., Aartsma-Rus, A.M.,Oberstein, S.A.J.L., 2016b. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain 139, 1123-1135.
    [35]
    Rutten, J.W., Haan, J., Terwindt, G.M., van Duinen, S.G., Boon, E.M.,Lesnik Oberstein, S.A., 2014. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev. Mol. Diagn. 14, 593-603.
    [36]
    Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X.,Zhang, F., 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88.
    [37]
    Tikka, S., Ng, Y.P., Di Maio, G., Mykkanen, K., Siitonen, M., Lepikhova, T., Poyhonen, M., Viitanen, M., Virtanen, I., Kalimo, H., et al., 2012. CADASIL mutations and shRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells. J. Cereb. Blood Flow Metab. 32, 2171-2180.
    [38]
    Tournier-Lasserve, E., Joutel, A., Melki, J., Weissenbach, J., Lathrop, G.M., Chabriat, H., Mas, J.L., Cabanis, E.A., Baudrimont, M., Maciazek, J., et al., 1993. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 3, 256-259.
    [39]
    Wang, Z., Yuan, Y., Zhang, W., Lv, H., Hong, D., Chen, B., Liu, Y., Luan, X., Xie, S.,Wu, S., 2011. NOTCH3 mutations and clinical features in 33 mainland Chinese families with CADASIL. J. Neurol. Neurosurg. Psychiatry 82, 534-539.
    [40]
    Weinberg, C.B.,Bell, E., 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397-400.
    [41]
    Wimmer, R.A., Leopoldi, A., Aichinger, M., Kerjaschki, D.,Penninger, J.M., 2019a. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082-3100.
    [42]
    Wimmer, R.A., Leopoldi, A., Aichinger, M., Wick, N., Hantusch, B., Novatchkova, M., Taubenschmid, J., Hammerle, M., Esk, C., Bagley, J.A., et al., 2019b. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505-510.
    [43]
    Yamamoto, Y., Kojima, K., Taura, D., Sone, M., Washida, K., Egawa, N., Kondo, T., Minakawa, E.N., Tsukita, K., Enami, T., et al., 2020. Human iPS cell-derived mural cells as an in vitro model of hereditary cerebral small vessel disease. Mol Brain 13, 38.
    [44]
    Zhi, S., Chen, Y., Wu, G., Wen, J., Wu, J., Liu, Q., Li, Y., Kang, R., Hu, S., Wang, J., et al., 2021. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther.
    [45]
    Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y.,Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads (21) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return