5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus

doi: 10.1016/j.jgg.2023.05.005
Funds:  We thank Yunhai Li lab for the vectors used in BiFC and LCI assay and technique advice for EMSA and protoplast transfection assays, Jian-Min Zhou lab and Dr. Xiaojing Dong for technique advice for MAPK activation analysis, Yanjun Cheng and Jianqing Xiong for generating transgenic barley. This research was funded by the National Key R&D Program of China (2018YFD1000703, 2018YFD1000700), the Strategic Priority Research Program of Chinese Academy of Sciences (XDPB16),and National Program on Research and Development of Transgenic Plants (2016ZX08009-003-001).
  • Received Date: 2022-11-06
  • Revised Date: 2023-05-07
  • Accepted Date: 2023-05-09
  • Available Online: 2023-05-22
  • Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species. However, the functions of MAPK signaling pathways in crop disease resistance are largely unknown. Here we report the function of HvMKK1-HvMPK4-HvWRKY1 module in barley immune system. HvMPK4 is identified to play a negative role in barley immune response against Bgh, as virus-induced gene silencing (VIGS) of HvMPK4 results in enhanced disease resistance whilst stably overexpressing HvMPK4 leads to super-susceptibility to Bgh infection. Furthermore, the barley MAPK kinase HvMKK1 is found to specifically interact with HvMPK4, and the activated HvMKK1DD variant specifically phosphorylates HvMPK4 in vitro. Moreover, the transcription factor HvWRKY1 is identified to be a downstream target of HvMPK4, and phosphorylated by HvMPK4 in vitro in the presence of HvMKK1DD. Phosphorylation assay coupled with mutagenesis analyses identifies S122, T284, and S347 in HvWRKY1 as the major residues phosphorylated by HvMPK4. HvWRKY1 is phosphorylated in barley at early stages of Bgh infection, which enhances its suppression on barley immunity likely due to enhanced DNA-binding and transcriptional repression activity. Our data suggest that the HvMKK1-HvMPK4 kinase pair acts upstream of HvWRKY1 to negatively regulate barley immunity against powdery mildew.
  • loading
  • [1]
    Abass, M., & Morris, P.C., 2013. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J. Plant Physiol. 170, 1353-1359.
    [2]
    Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., et al., 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J. 24, 2579-2589.
    [3]
    Basheer, J., Vadovic, P., Samajova, O., Melicher, P., Komis, G., Krenek, P., Kralova, M., Pechan, T., Ovecka, M., Takac, T., et al., 2022. Knockout of MITOGEN-ACTIVATED PROTEIN KINASE 3 causes barley root resistance against Fusarium graminearum. Plant Physiol. http://https://doi.org/10.1093/plphys/kiac1389.
    [4]
    Berriri, S., Garcia, A.V., Frei dit Frey, N., Rozhon, W., Pateyron, S., Leonhardt, N., Montillet, J.L., Leung, J., Hirt, H., Colcombet, J., 2012. Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24, 4281-4293.
    [5]
    Boller, T., & Felix, G., 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379-406.
    [6]
    Chang, C., Yu, D., Jiao, J., Jing, S., Schulze-Lefert, P., Shen, Q.H., 2013. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 25, 1158-1173.
    [7]
    Chen, X., Li, C., Wang, H., Guo, Z., 2019. WRKY transcription factors: evolution, binding, and action. Phytopathol. Res. 1, 13.
    [8]
    Ciolkowski, I., Wanke, D., Birkenbihl, R.P., Somssich, I.E., 2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 68, 81-92.
    [9]
    Cook, D.E., Mesarich, C.H., Thomma, B.P., 2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53, 541-563.
    [10]
    Cui, H., Wang, Y., Xue, L., Chu, J., Yan, C., Fu, J., Chen, M., Innes, R.W., Zhou, J.M., 2010. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7, 164-175.
    [11]
    Cui, L., Yang, G., Yan, J., Pan, Y., Nie, X., 2019. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics 20, 750.
    [12]
    Dodds, P.N., & Rathjen, J.P., 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
    [13]
    Dou, D., & Zhou, J.M., 2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12, 484-495.
    [14]
    Eckey, C., Korell, M., Leib, K., Biedenkopf, D., Jansen, C., Langen, G., Kogel, K.H., 2004. Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol. Biol. 55, 1-15.
    [15]
    Eschen-Lippold, L., Jiang, X., Elmore, J.M., Mackey, D., Shan, L., Coaker, G., Scheel, D., Lee, J., 2016. Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11. Plant Physiol. 171, 2223-2238.
    [16]
    Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E., 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199-206.
    [17]
    Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., Zhang, Y., 2008. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18, 1190-1198.
    [18]
    Goyal, R.K., Tulpan, D., Chomistek, N., Gonzalez-Pena Fundora, D., West, C., Ellis, B.E., Frick, M., Laroche, A., Foroud, N.A., 2018. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 19, 178.
    [19]
    Han, X., Zhang, L., Zhao, L., Xue, P., Qi, T., Zhang, C., Yuan, H., Zhou, L., Wang, D., Qiu, J., et al., 2020. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. Plant Commun. 1, 100083.
    [20]
    Huang, Y., Li, H., Gupta, R., Morris, P.C., Luan, S., Kieber, J.J., 2000. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 122, 1301-1310.
    [21]
    Ishihama, N., Yamada, R., Yoshioka, M., Katou, S., Yoshioka, H., 2011. Phosphorylation of the Nicotiana benthamiana WRKY8 Transcription Factor by MAPK Functions in the Defense Response. Plant Cell 23, 1153-1170.
    [22]
    Jin, H., Han, X., Wang, Z., Xie, Y., Zhang, K., Zhao, X., Wang, L., Yang, J., Liu, H., Ji, X., et al., 2022. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection. EMBO J. 41, e110521.
    [23]
    Jones, J.D., & Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329.
    [24]
    Jones, J.D., Vance, R.E., Dangl, J.L., 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354. http://https://doi.org/10.1126/science.aaf6395.
    [25]
    Katou, S., Yamamoto, A., Yoshioka, H., Kawakita, K., Doke, N., 2003. Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J. Gen. Plant Pathol. 69, 161-168.
    [26]
    King, S.R.F., McLellan, H., Boevink, P.C., Armstrong, M.R., Bukharova, T., Sukarta, O., Win, J., Kamoun, S., Birch, P.R.J., Banfield, M.J., 2014. Phytophthora infestans RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling. Plant Cell 26, 1345-1359.
    [27]
    Li, B., Jiang, S., Yu, X., Cheng, C., Chen, S., Cheng, Y., Yuan, J.S., Jiang, D., He, P., Shan, L., 2015. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27, 839-856.
    [28]
    Li, Y., Guo, G., Zhou, L., Chen, Y., Zong, Y., Huang, J., Lu, R., Liu, C., 2020. Transcriptome Analysis Identifies Candidate Genes and Functional Pathways Controlling the Response of Two Contrasting Barley Varieties to Powdery Mildew Infection. Int. J. Mol. Sci. 21, 151.
    [29]
    Liao, Y., Zou, H.F., Wang, H.W., Zhang, W.K., Ma, B., Zhang, J.S., Chen, S.Y., 2008. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res. 18, 1047-1060.
    [30]
    Liu, J.Z., Horstman, H.D., Braun, E., Graham, M.A., Zhang, C., Navarre, D., Qiu, W.L., Lee, Y., Nettleton, D., Hill, J.H., et al., 2011. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol. 157, 1363-1378.
    [31]
    Liu, X., Li, J., Xu, L., Wang, Q., Lou, Y., 2018. Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int. J. Mol. Sci. 19.
    [32]
    Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S., 2011. Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653.
    [33]
    Meng, X., & Zhang, S., 2013. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 51, 245-266.
    [34]
    Ngou, B.P.M., Ahn, H.K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
    [35]
    Oh, S.K., Baek, K.H., Park, J.M., Yi, S.Y., Yu, S.H., Kamoun, S., Choi, D., 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177, 977-989.
    [36]
    Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., et al., 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120.
    [37]
    Pitzschke, A., & Hirt, H., 2009. Disentangling the complexity of mitogen-activated protein kinases and reactive oxygen species signaling. Plant Physiol. 149, 606-615.
    [38]
    Qiu, J.L., Zhou, L., Yun, B.-W., Nielsen, H.B., Fiil, B.K., Petersen, K., MacKinlay, J., Loake, G.J., Mundy, J., Morris, P.C., 2008a. Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 148, 212.
    [39]
    Qiu, J.L., Fiil, B.K., Petersen, K., Nielsen, H.B., Botanga, C.J., Thorgrimsen, S., Palma, K., Suarez-Rodriguez, M.C., Sandbech-Clausen, S., Lichota, J., et al., 2008b. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J. 27, 2214-2221.
    [40]
    Rodriguez, M.C., Petersen, M., Mundy, J., 2010. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621-649.
    [41]
    Roux, M.E., Rasmussen, M.W., Palma, K., Lolle, S., Regue, A.M., Bethke, G., Glazebrook, J., Zhang, W., Sieburth, L., Larsen, M.R., et al., 2015. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J. 34, 593-608.
    [42]
    Seeholzer, S., Tsuchimatsu, T., Jordan, T., Bieri, S., Pajonk, S., Yang, W., Jahoor, A., Shimizu, K.K., Keller, B., Schulze-Lefert, P., 2010. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant Microbe Interact. 23, 497-509.
    [43]
    Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I.E., Schulze-Lefert, P., 2007. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315, 1098-1103.
    [44]
    Shen, X., Yuan, B., Liu, H., Li, X., Xu, C., Wang, S., 2010. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J. 64, 86-99.
    [45]
    Takac, T., Krenek, P., Komis, G., Vadovic, P., Ovecka, M., Ohnoutkova, L., Pechan, T., Kasparek, P., Ticha, T., Basheer, J., et al., 2021. TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley. Front. Plant Sci. 12, 666229.
    [46]
    Takagi, M., Hamano, K., Takagi, H., Morimoto, T., Akimitsu, K., Terauchi, R., Shirasu, K., Ichimura, K., 2019. Disruption of the MAMP-Induced MEKK1-MKK1/MKK2-MPK4 Pathway Activates the TNL Immune Receptor SMN1/RPS6. Plant Cell Physiol. 60, 778-787.
    [47]
    Thulasi Devendrakumar, K., Li, X., Zhang, Y., 2018. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell. Mol. Life Sci. 75, 2981-2989.
    [48]
    Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al., 2021. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500-503.
    [49]
    Virk, N., Liu, B., Zhang, H., Li, X., Zhang, Y., Li, D., Song, F., 2013. Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol. Plant. 35, 1211-1221.
    [50]
    Wang, D., Wang, H., Liu, Q., Tu, R., Zhou, X., Zhang, Y., Wu, W., Yu, P., Chen, D., Zhan, X., et al., 2021. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. Plant Cell Rep. 40, 835-850.
    [51]
    Wang, Z., Mao, H., Dong, C., Ji, R., Cai, L., Fu, H., Liu, S., 2009. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol. Plant Microbe Interact. 22, 235-244.
    [52]
    Wei, J., Wang, X., Hu, Z., Wang, X., Wang, J., Wang, J., Huang, X., Kang, Z., Tang, C., 2023. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4. J. Integr. Plant Biol. 65, 249-264.
    [53]
    Yang, K.Y., Liu, Y., Zhang, S., 2001. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. U. S. A. 98, 741-746.
    [54]
    Yang, P., Chen, C., Wang, Z., Fan, B., Chen, Z., 1999. A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J. 18, 141-149.
    [55]
    Yu, D., Fan, R., Zhang, L., Xue, P., Liao, L., Hu, M., Cheng, Y., Li, J., Qi, T., Jing, S., et al., 2023. HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley. Crop J. 11, 9.
    [56]
    Yuan, B., Shen, X., Li, X., Xu, C., Wang, S., 2007. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226, 953-960.
    [57]
    Yuan, M., Ngou, B.P.M., Ding, P., Xin, X.F., 2021. PTI-ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030.
    [58]
    Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., et al., 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1, 175-185.
    [59]
    Zhang, Z., Liu, Y., Huang, H., Gao, M., Wu, D., Kong, Q., Zhang, Y., 2017. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep. 18, 292-302.
    [60]
    Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., Zhang, Y., 2012. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11, 253-263.
    [61]
    Zheng, X., Fang, A., Qiu, S., Zhao, G., Wang, J., Wang, S., Wei, J., Gao, H., Yang, J., Mou, B., et al., 2022. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. Plant Cell 34, 3088-3109.
    [62]
    Zipfel, C., 2014. Plant pattern-recognition receptors. Trends Immunol. 35, 345-351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return