[1] |
Angshuman, S., Cordula, S., 2007. An approach for immunofluorescence of Drosophila s2 cells. CSH Protoc 2007, pdb prot4760.
|
[2] |
Capotosti, F., et al., 2011. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376-388.
|
[3] |
Chen, K., et al., 2013. A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife 2, e00861.
|
[4] |
Cheutin, T., Cavalli, G., 2012. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet. 8, e1002465.
|
[5] |
Djabrayan, N.J., et al., 2019. Metabolic Regulation of Developmental Cell Cycles and Zygotic Transcription. Curr. Biol. 29, 1193-1198.
|
[6] |
Fenckova, M., et al., 2022. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet. 18, e1010159.
|
[7] |
Galeone, A., et al., 2020. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. Elife 9, e55596.
|
[8] |
Galeone, A., et al., 2017. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. Elife 6, e27612.
|
[9] |
Gambetta, M.C., Muller, J., 2014. O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell 31, 629-639.
|
[10] |
Gambetta, M.C., et al., 2009. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93-96.
|
[11] |
Grote, A., et al., 2005. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(Web Server issue), W526-W531.
|
[12] |
Hamaratoglu, F., et al., 2014. Dpp/BMP signaling in flies: from molecules to biology. Semin. Cell Dev. Biol. 32, 128-136.
|
[13] |
Hardiville, S., Hart, G.W., 2016. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin. Curr. Opin. Chem. Biol. 33, 88-94.
|
[14] |
Hart, G.W., 2014. Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne) 5, 183.
|
[15] |
Holley, S.A., et al., 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249-253.
|
[16] |
Humphreys, G.B., et al., 2013. Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the embryonic epidermis of Drosophila. Dev. Biol. 381, 434-445.
|
[17] |
Ingham, P.W., 1984. A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 37, 815-823.
|
[18] |
Jia, J., et al., 2021. A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 118.
|
[19] |
Kim, C.A., et al., 2002. The SAM domain of polyhomeotic forms a helical polymer. Nat. Struct. Biol. 9, 453-457.
|
[20] |
Liu, B., et al., 2019. A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control. Curr. Biol. 29, 1187-1192.
|
[21] |
Loubiere, V., et al., 2017. Chromatin Immunoprecipitation Experiments from Whole Drosophila Embryos or Larval Imaginal Discs. Bio. Protoc. 7, e2327.
|
[22] |
Mariappa, D., et al., 2018. Effects of hypo-O-GlcNAcylation on Drosophila development. J. Biol. Chem. 293, 7209-7221.
|
[23] |
Mariappa, D., et al., 2015. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development. Biochem. J. 470, 255-262.
|
[24] |
Moulton, M.J., et al., 2020. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev. Cell 53, 330-343.
|
[25] |
Negreiros, E., et al., 2018. N-linked glycosylation restricts the function of Short gastrulation to bind and shuttle BMPs. Development 145.
|
[26] |
Olivier-Van Stichelen, S., Hanover, J.A., 2015. You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr. Opin. Clin. Nutr. Metab. Care 18, 339-345.
|
[27] |
Ong, Q., et al., 2018. O-GlcNAc as an Integrator of Signaling Pathways. Front Endocrinol (Lausanne) 9, 599.
|
[28] |
Pravata, V.M., et al., 2020a. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett. 594, 717-727.
|
[29] |
Pravata, V.M., et al., 2019. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc. Natl. Acad. Sci. U. S. A. 116, 14961-14970.
|
[30] |
Pravata, V.M., et al., 2020b. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur. J. Hum. Genet. 28, 706-714.
|
[31] |
Rao, F.V., et al., 2006. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 25, 1569-1578.
|
[32] |
Schulz, K.N., Harrison, M.M., 2019. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221-234.
|
[33] |
Selvan, N., et al., 2018. O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J. Biol. Chem. 293, 10810-10824.
|
[34] |
Selvan, N., et al., 2017. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat. Chem. Biol. 13, 882-887.
|
[35] |
Sengupta, S., et al., 2016. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE 11, e0166829.
|
[36] |
Shafi, R., et al., 2000. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. U. S. A. 97, 5735-5739.
|
[37] |
Sinclair, D.A., et al., 2009. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. U. S. A. 106, 13427-13432.
|
[38] |
Strong, I.J.T., et al., 2020. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol. 18, e3000891.
|
[39] |
Vaidyanathan, K., et al., 2017. Identification and characterization of a missense mutation in the O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. J. Biol. Chem. 292, 8948-8963.
|
[40] |
Vocadlo, D.J., 2012. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr. Opin. Chem. Biol. 16, 488-497.
|
[41] |
Willems, A.P., et al., 2017. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. J. Biol. Chem. 292, 12621-12631.
|
[42] |
Yang, X., Qian, K., 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452-465.
|
[43] |
Yuan, K., O'Farrell, P.H., 2016. TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos. Genes Dev. 30, 579-593.
|
[44] |
Yuan, K., et al., 2016. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View. Trends Genet. 32, 496-507.
|