5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

Thyroid-stimulating hormone (TSH)-thyroid hormone (TH) signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish

doi: 10.1016/j.jgg.2023.05.015
Funds:  This work was supported by grants from the National Key Research and Development Program of China (2019YFA0802400), the National Natural Science Foundation of China (NSFC) (#31300969, #31961133026, and #31871187), the Natural Science Foundation of Jiangsu Province (BK20130302), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PARD). We thank Bo Zhang for providing TALEN reagents; Mingyong Wang and Taole Liu for technical assistance in dissecting zebrafish; Xiaoqin Yang for help in bioinformatic analysis; and members of our laboratory for helpful comments on the early stages of this study.
  • Received Date: 2023-04-02
  • Revised Date: 2023-05-29
  • Accepted Date: 2023-05-30
  • Available Online: 2023-06-14
  • Thyroid-stimulating hormone (TSH) is important for the thyroid gland, development, growth, and metabolism. Defects in TSH production or the thyrotrope cells within the pituitary gland cause congenital hypothyroidism (CH), resulting in growth retardation and neurocognitive impairment. While human TSH is known to display rhythmicity, the molecular mechanisms underlying the circadian regulation of TSH and the effects of TSH-thyroid hormone (TH) signaling on the circadian clock remain elusive. Here we show that TSH, T4, T3, and tshba display rhythmicity in both larval and adult zebrafish and tshba is regulated directly by the circadian clock via both E’-box and D-box. Zebrafish tshba mutants manifest congenital hypothyroidism, with the characteristics of low levels of T4 and T3 and growth retardation. Loss of tshba or overexpression of tshba alters the rhythmicity of locomotor activities and expression of core circadian clock genes and hypothalamic-pituitary-thyroid (HPT) axis-related genes. Furthermore, TSH-TH signaling regulates clock2/npas2 via the TRE in its promoter, and transcriptome analysis revealed extensive functions of Tshba in zebrafish. Together, our results demonstrate that zebrafish tshba is a direct target of the circadian clock and in turn plays critical roles in circadian regulation along with other functions.
  • loading
  • [1]
    Aizawa, S., Hoshino, S., Sakata, I., Adachi, A., Yashima, S., Hattori, A., Sakai, T., 2007. Diurnal change of thyroid-stimulating hormone mRNA expression in the rat pars tuberalis. J. Neuroendocrinol. 19, 839-846.
    [2]
    Alonso, M., Goodwin, C., Liao, X., Page, D., Refetoff, S., Weiss, R.E., 2007. Effects of maternal levels of thyroid hormone (TH) on the hypothalamus-pituitary-thyroid set point: studies in TH receptor beta knockout mice. Endocrinology 148, 5305-5312.
    [3]
    Aninye, I.O., Matsumoto, S., Sidhaye, A.R., Wondisford, F.E., 2014. Circadian regulation of Tshb gene expression by Rev-Erbalpha (NR1D1) and nuclear corepressor 1 (NCOR1). J. Biol. Chem. 289, 17070-17077.
    [4]
    Aranda, A., Pascual, A., 2001. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269-1304.
    [5]
    Bauer, M.S., Soloway, A., Dratman, M.B., Kreider, M., 1992. Effects of hypothyroidism on rat circadian activity and temperature rhythms and their response to light. Biol. Psychiat. 32, 411-425.
    [6]
    Beamer, W.J., Eicher, E.M., Maltais, L.J., Southard, J.L., 1981. Inherited primary hypothyroidism in mice. Science 212, 61-63.
    [7]
    Bianco, A.C., Kim, B.W., 2006. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116(10), 2571-2579.
    [8]
    Cano, P., Jimenez-Ortega, V., Larrad, A., Reyes Toso, C.F., Cardinali, D.P., Esquifino, A.I., 2008. Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33, 118-125.
    [9]
    Chen, J.M., Huang, C.Q., Ai, M., Kuang, L., 2013. Circadian rhythm of TSH levels in subjects with Alzheimer's disease (AD). Aging Clin. Exp. Res. 25, 153-157.
    [10]
    Cheng, S.Y., Leonard, J.L., Davis, P.J., 2010. Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139-170.
    [11]
    Dardente, H., Hazlerigg, D.G., Ebling, F.J., 2014. Thyroid hormone and seasonal rhythmicity. Front. Endocrinol. 5, 19.
    [12]
    Dardente, H., Wyse, C.A., Birnie, M.J., Dupre, S.M., Loudon, A.S.I., Lincoln, G.A., Hazlerigg, D.G., 2010. A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20, 2193-2198.
    [13]
    de Vrieze, E., van de Wiel, S.M., Zethof, J., Flik, G., Klaren, P.H., Arjona, F.J., 2014. Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish. Endocrinology 155, 2320-2330.
    [14]
    Deladoey, J., Ruel, J., Giguere, Y., Van Vliet, G., 2011. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J. Clin. Endocr. Metab. 96, 2422-2429.
    [15]
    Doyle, E.L., Booher, N.J., Standage, D.S., Voytas, D.F., Brendel, V.P., Vandyk, J.K., Bogdanove, A.J., 2012. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40, W117-W122.
    [16]
    Drolet, D.W., Scully, K.M., Simmons, D.M., Wegner, M., Chu, K., Swanson, L.W., Rosenfeld, M.G., 1991. Tef, a transcription factor expressed specifically in the anterior-pituitary duringembryogenesis, defines a new class of leucine zipper proteins. Gene Dev. 5, 1739-1753.
    [17]
    Dunn, I.C., Wilson, P.W., Shi, Y., Burt, D.W., Loudon, A.S.I., Sharp, P.J., 2017. Diurnal and photoperiodic changes in thyrotrophin-stimulating hormone beta expression and associated regulation of deiodinase enzymes (DIO2, DIO3) in the female juvenile chicken hypothalamus. J. Neuroendocrinol. 29, e12554.
    [18]
    Ehrenkranz, J., Bach, P.R., Snow, G.L., Schneider, A., Lee, J.L., Ilstrup, S., Bennett, S.T., Benvenga, S., 2015. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 25, 954-961.
    [19]
    Evans, R.M., Mangelsdorf, D.J., 2014. Nuclear receptors, RXR, and the big bang. Cell 157, 255-266.
    [20]
    Feng, J.X., Meyer, C.A., Wang, Q., Liu, J.S., Liu, X.S., Zhang, Y., 2012. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28, 2782-2788.
    [21]
    Flamant, F., Cheng, S.Y., Hollenberg, A.N., Moeller, L.C., Samarut, J., Wondisford, F.E., Yen, P.M., Refetoff, S., 2017. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052-2057.
    [22]
    Grosse, S.D., Van Vliet, G., 2011. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level? Arch. Dis. Child 96, 374-U133.
    [23]
    Huang, G., Zhang, F., Ye, Q., Wang, H., 2016. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbalpha and indirectly via Cebpb/(C/ebpbeta) in zebrafish. Autophagy 12, 1292-1309.
    [24]
    Huang, J., Zhong, Z., Wang, M., Chen, X., Tan, Y., Zhang, S., He, W., He, X., Huang, G., Lu, H., et al., 2015. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J. Neurosci. 35, 2572-2587.
    [25]
    Huang, P., Xiao, A., Tong, X.J., Zu, Y., Wang, Z.X., Zhang, B., 2014. TALEN construction via "Unit Assembly" method and targeted genome modifications in zebrafish. Methods 69, 67-75.
    [26]
    Hughes, M.E., Hogenesch, J.B., Kornacker, K., 2010. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372-380.
    [27]
    Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229.
    [28]
    Inukai, T., Inaba, T., Dang, J.J., Kuribara, R., Ozawa, K., Miyajima, A., Wu, W.S., Look, A.T., Arinobu, Y., Iwasaki, H., et al., 2005. TEF, an antiapoptotic bZIP transcription factor related to the oncogenic E2A-HLF chimera, inhibits cell growth by down-regulating expression of the common beta chain of cytokine receptors. Blood 105, 4437-4444.
    [29]
    Ji, C., Jin, X., He, J.Y., Yin, Z., 2012. Use of TSH beta:EGFP transgenic zebrafish as a rapid in vivo model for assessing thyroid-disrupting chemicals. Toxicol. Appl. Pharm. 262, 149-155.
    [30]
    Jones, R.A., Cohn, W.B., Miller, T.C., Jaques, J.T., MacKenzie, D.S., 2013. Cyclic mRNA expression of thyrotropin subunits and deiodinases in red drum, Sciaenops ocellatus. Gen. Comp. Endocrinol. 194, 248-256.
    [31]
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L., 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.
    [32]
    Kim, K.K., Song, S.B., Kang, K.I., Rhee, M., Kim, K.E., 2007. Activation of the thyroid-stimulating hormone beta-subunit gene by LIM homeodomain transcription factor Lhx2. Endocrinology 148, 3468-3476.
    [33]
    Kratzsch, J., Pulzer, F., 2008. Thyroid gland development and defects. Best Pract. Res. Clin. Endocrinol. Metab. 22, 57-75.
    [34]
    Kripke, D.F., Elliott, J.A., Welsh, D.K., Youngstedt, S.D., 2015. Photoperiodic and circadian bifurcation theories of depression and mania. F1000Res. 4, 107.
    [35]
    Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., Chien, C.B., 2007. The Tol2kit: a multisite Gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dynam. 236, 3088-3099.
    [36]
    Landgraf, D., Tsang, A.H., Leliavski, A., Koch, C.E., Barclay, J.L., Drucker, D.J., Oster, H., 2015. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLife 4, e06253.
    [37]
    Linnstaedt, S.D., Pan, Y., Mauck, M.C., Sullivan, J., Zhou, C.Y., Jung, L., Rueckeis, C.A., Blount, J.D., Carson, M.S., Tungate, A.S., et al., 2018. Evaluation of the association between genetic variants in circadian rhythm genes and posttraumatic stress symptoms identifies a potential functional allele in the transcription factor TEF. Front. Psychiatry 9, 597.
    [38]
    Liu, H., 2017. Role of Clock2 in the zebrafish circadian clock. Master’s thesis, Soochow University.
    [39]
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    [40]
    Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., Lin, S., 1997. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105-4111.
    [41]
    Mannic, T., Meyer, P., Triponez, F., Pusztaszeri, M., Le Martelot, G., Mariani, O., Schmitter, D., Sage, D., Philippe, J., Dibner, C., 2013. Circadian clock characteristics are altered in human thyroid malignant nodules. J. Clin. Endocr. Metab. 98, 4446-4456.
    [42]
    Marelli, F., Carra, S., Agostini, M., Cotelli, F., Peeters, R., Chatterjee, K., Persani, L., 2016. Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action. Mol. Cell. Endocrinol. 424, 102-117.
    [43]
    Marians, R.C., Ng, L., Blair, H.C., Unger, P., Graves, P.N., Davies, T.F., 2002. Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc. Natl. Acad. Sci. U. S. A. 99, 15776-15781.
    [44]
    Masumoto, K.H., Ukai-Tadenuma, M., Kasukawa, T., Nagano, M., Uno, K.D., Tsujino, K., Horikawa, K., Shigeyoshi, Y., Ueda, H.R., 2010. Acute induction of Eya3 by late-night light stimulation triggers TSHbeta expression in photoperiodism. Curr. Biol. 20, 2199-2206.
    [45]
    McMenamin, S.K., Bain, E.J., McCann, A.E., Patterson, L.B., Eom, D.S., Waller, Z.P., Hamill, J.C., Kuhlman, J.A., Eisen, J.S., Parichy, D.M., 2014. Thyroid hormone-dependent adult pigment cell lineage and pattern in zebrafish. Science 345, 1358-1361.
    [46]
    Mengreli, C., Kanaka-Gantenbein, C., Girginoudis, P., Magiakou, M.A., Christakopoulou, I., Giannoulia-Karantana, A., Chrousos, G.P., Dacou-Voutetakis, C., 2010. Screening for congenital hypothyroidism: the significance of threshold limit in false-negative results. J. Clin. Endocr. Metab. 95, 4283-4290.
    [47]
    Mracek, P., Pagano, C., Frohlich, N., Idda, M.L., Cuesta, I.H., Lopez-Olmeda, J.F., Sanchez-Vazquez, F.J., Vallone, D., Foulkes, N.S., 2013. ERK Signaling regulates light-induced gene expression via D-Box enhancers in a differential, wavelength-dependent manner. PloS ONE 8, e67858.
    [48]
    Mullur, R., Liu, Y.Y., Brent, G.A., 2014. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355-382.
    [49]
    Opitz, R., Maquet, E., Zoenen, M., Dadhich, R., Costagliola, S., 2011. TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol. Endocrinol. 25, 1579-1599.
    [50]
    Paquette, M.A., Atlas, E., Wade, M.G., Yauk, C.L., 2014. Thyroid hormone response element half-site organization and its effect on thyroid hormone mediated transcription. PLoS ONE 9, e101155.
    [51]
    Patel, J., Landers, K., Li, H., Mortimer, R.H., Richard, K., 2011. Thyroid hormones and fetal neurological development. J. Endocrinol. 209, 1-8.
    [52]
    Peliciari-Garcia, R.A., Bargi-Souza, P., Young, M.E., Nunes, M.T., 2018. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol. Int. 35, 147-159.
    [53]
    Philippe, J., Dibner, C., 2015. Thyroid circadian timing: roles in physiology and thyroid malignancies. J. Biol. Rhythms 30, 76-83.
    [54]
    Roelfsema, F., Veldhuis, J.D., 2013. Thyrotropin secretion patterns in health and disease. Endocr. Rev. 34, 619-657.
    [55]
    Russell, W., Harrison, R.F., Smith, N., Darzy, K., Shalet, S., Weetman, A.P., Ross, R.J., 2008. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93, 2300-2306.
    [56]
    Saravanan, P., Siddique, H., Simmons, D.J., Greenwood, R., Dayan, C.M., 2007. Twenty-four hour hormone profiles of TSH, free T3 and free T4 in hypothyroid patients on combined T3/T4 therapy. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 115, 261-267.
    [57]
    Schenk, H., Muller-Deile, J., Kinast, M., Schiffer, M., 2017. Disease modeling in genetic kidney diseases: zebrafish. CellTissue Res. 369, 127-141.
    [58]
    Schoenmakers, N., Alatzoglou, K.S., Chatterjee, V.K., Dattani, M.T., 2015. Recent advances in central congenital hypothyroidism. J. Endocrinol. 227, R51-R71.
    [59]
    Slawik, M., Klawitter, B., Meiser, E., Schories, M., Zwermann, O., Borm, K., Peper, M., Lubrich, B., Hug, M.J., Nauck, M., et al., 2007. Thyroid hormone replacement for central hypothyroidism: a randomized controlled trial comparing two doses of thyroxine (T4) with a combination of T4 and triiodothyronine. J. Clin. Endocrinol. Metab. 92, 4115-4122.
    [60]
    Song, J., Lu, Y., Cheng, X., Shi, C., Lou, Q., Jin, X., He, J., Zhai, G., Yin, Z., 2021. Functions of the thyroid-stimulating hormone on key developmental features revealed in a series of zebrafish dyshormonogenesis models. Cells 10, 1984.
    [61]
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550.
    [62]
    Sun, Y., Liu, C., Huang, M., Huang, J., Liu, C., Zhang, J., Postlethwait, J.H., Wang, H., 2019. The molecular evolution of circadian clock genes in spotted gar (Lepisosteus oculatus). Genes (Basel) 10, 622.
    [63]
    Swanson, E.A., Gloss, B., Belke, D.D., Kaneshige, M., Cheng, S.Y., Dillmann, W.H., 2003. Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinol. 144, 4820-4825.
    [64]
    Tonsfeldt, K.J., Chappell, P.E., 2012. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol. Cell. Endocrinol. 349, 3-12.
    [65]
    Tonyushkina, K.N., Shen, M.C., Ortiz-Toro, T., Karlstrom, R.O., 2014. Embryonic exposure to excess thyroid hormone causes thyrotrope cell death. J. Clin. Invest. 124, 321-327.
    [66]
    Ueda, H.R., Hayashi, S., Chen, W.B., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M., Hashimoto, S., 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192.
    [67]
    Ukai-Tadenuma, M., Kasukawa, T., Ueda, H.R., 2008. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 10, 1154-1163.
    [68]
    Vatine, G., Vallone, D., Appelbaum, L., Mracek, P., Ben-Moshe, Z., Lahiri, K., Gothilf, Y., Foulkes, N.S., 2009. Light directs zebrafish period2 expression via conserved D and E Boxes. PLoS Biol. 7, e1000223.
    [69]
    Velasco, L.F.R., Togashi, M., Walfish, P.G., Pessanha, R.P., Moura, F.N., Barra, G.B., Nguyen, P., Rebong, R., Yuan, C., Simeoni, L.A., et al., 2007. Thyroid hormone response element organization dictates the composition of active receptor. J. Biol. Chem. 282, 12458-12466.
    [70]
    Wang, H., Kesinger, J.W., Zhou, Q., Wren, J.D., Martin, G., Turner, S., Tang, Y., Frank, M.B., Centola, M., 2008. Identification and characterization of zebrafish ocular formation genes. Genome 51, 222-235.
    [71]
    Wang, M., Zhong, Z., Zhong, Y., Zhang, W., Wang, H., 2015. The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptor alpha (Roralpha). J. Biol. Chem. 290, 4367-4382.
    [72]
    Wood, S., Loudon, A., 2014. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. J. Endocrinol. 222, R39-R59.
    [73]
    Wu, Y., Xu, B., Koenig, R.J., 2001. Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J. Biol. Chem. 276, 3929-3936.
    [74]
    Xu, K.Y., DiAngelo, J.R., Hughes, M.E., Hogenesch, J.B., Sehgal, A., 2011. The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab. 13, 639-654.
    [75]
    Yang, J., Yi, N., Zhang, J., He, W., He, D., Wu, W., Xu, S., Li, F., Fan, G., Zhu, X., et al., 2018. Generation and characterization of a hypothyroidism rat model with truncated thyroid stimulating hormone receptor. Sci. Rep. 8, 4004.
    [76]
    Zhang, S., Xu, M., Huang, J., Tang, L., Zhang, Y., Wu, J., Lin, S., Wang, H., 2014. Heme acts through the Bach1b/Nrf2a-MafK pathway to regulate exocrine peptidase precursor genes in porphyric zebrafish. Dis. Model Mech. 7, 837-845.
    [77]
    Zhao, X., Cho, H., Yu, R.T., Atkins, A.R., Downes, M., Evans, R.M., 2014. Nuclear receptors rock around the clock. EMBO Rep. 15, 518-528.
    [78]
    Zhong, Y., Ye, Q., Chen, C., Wang, M., Wang, H., 2018. Ezh2 promotes clock function and hematopoiesis independent of histone methyltransferase activity in zebrafish. Nucleic Acids Res. 46, 3382-3399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (223) PDF downloads (26) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return