Alemán, F., Caballero, F., Ródenas, R., Rivero, R.M., Martínez, V., Rubio, F., 2014. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression. Front. Plant Sci. 5, 430.
|
Allu, A.D., Soja, A.M., Wu, A., Szymanski, J., Balazadeh, S., 2014. Salt stress and senescence:identification of cross-talk regulatory components. J. Exp. Bot. 65, 3993-4008.
|
An, J., Hu, P., Li, F., Wu, H., Shen, Y., White, J.C., Tian, X., Li, Z., Giraldo, J.P., 2020. Emerging investigator series:molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano 7, 2214-2228.
|
Apse, M., Blumwald, E., 2002. Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13, 146-150.
|
Apse, M.P., Blumwald, E., 2007. Na+ transport in plants. FEBS Lett. 581, 2247-2254.
|
Ashraf, M., Shahzad, S.M., Imtiaz, M., Rizwan, M.S., Arif, M.S., Kausar, R., 2018. Nitrogen nutrition and adaptation of glycophytes to saline environment:a review. Arch. Agron. Soil. Sci. 64, 1181-1206.
|
Bagheri, M., Gholami, M., Baninasab, B., 2019. Hydrogen peroxide-induced salt tolerance in relation to antioxidant systems in pistachio seedlings. Sci. Hortic. 243, 207-213.
|
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233-266.
|
Banerjee, A., Sarkar, S., Cuadros, Orellana, S., Bandopadhyay, R., 2019. Exopolysaccharides and biofilms in mitigating salinity stress:The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms. Microorganisms in Saline Environments:Strategies and Functions, 133-153.
|
Barnawal, D., Bharti, N., Pandey, S.S., Pandey, A., Chanotiya, C.S., Kalra, A., 2017. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol. Plant 161, 502-514.
|
Barragan, V., Lei, di, E.O., Andres, Z., Rubio, L., De, Luca, A., Fernandez, J.A., Cubero, B., Pardo, J.M., 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127-1142.
|
Barrero, J.M., Rodriguez, P.L., Quesada, V., Piqueras, P., Ponce, M.R., Micol, J.L., 2006. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ. 29, 2000-2008.
|
Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oi, ki, S., Yamada, K., Cellier, F., 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004-2014.
|
Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431-434.
|
Blumwald, E., Aharon, G.S., Apse, M.P., 2000. Sodium transport in plant cells. B.B.A. Biomembranes 1465, 140-151.
|
Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., Tyerman, S.D., 2017. Chloroplast function and ion regulation in plants growing on saline soils:lessons from halophytes. J. Exp. Bot. 68, 3129-3143.
|
Boursiac, Y., Chen, S., Luu, D.T., Sorieul, M., van, den, Dries, N., Maurel, C., 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790-805.
|
Brookbank, B.P., Patel, J., Gazzarrini, S., Nambara, E., 2021. Role of basal ABA in plant growth and development. Genes 12, 1936.
|
Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.
|
Cao, Y., Liang, X., Yin, P., Zhang, M., Jiang, C., 2019. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytol. 222, 301-317.
|
Cellier, F., Conéjéro, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., Casse, F., 2004. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J. 39, 834-846.
|
Chakraborti, S., Bera, K., Sadhukhan, S., Dutta, P., 2022. Bio-priming of seeds:Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress 3, 100052.
|
Chaumont, F., Tyerman, S.D., 2014. Aquaporins:highly regulated channels controlling plant water relations. Plant Physiol. 164, 1600-1618.
|
Chaves, M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551-560.
|
Chen, C., He, G., Li, J., Perez-Hormaeche, J., Becker, T., Luo, Met, al., 2023. A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion. EMBO J. 22, e113004.
|
Chen, K., Gao, J., Sun, S., Zhang, Z., Yu, B., Li, J., Xie, C., Li, G., Wang, P., Song, C-P., 2020. BONZAI proteins control global osmotic stress responses in plants. Curr. Bio. 30, 4815-4825.
|
Chen, Y.E., Mao, J.J., Sun, L.Q., Huang, B., Ding, C.B., Gu, Y., Liao, J.Q., Hu, C., Zhang, Z.W., Yuan, S., Yuan, M., 2018. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant 164, 349-363.
|
Cheng, P., Zhang, Y., Wang, J., Guan, R., Pu, H., Shen, W., 2022. Importance of hydrogen sulfide as the molecular basis of heterosis in hybrid Brassica napus:A case study in salinity response. Environ. Exp. Bot. 193, 104693.
|
Che, Othman, M.H., Jacoby, R.P., Millar, A.H., Taylor, N.L., 2020. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 225, 1166-1180.
|
Chialva, M., Lanfranco, L., Bonfante, P., 2022. The plant microbiota:composition, functions, and engineering. Curr. Opin. Biotechnol. 73, 135-142.
|
Chiluwal, A., Bheemanahalli, R., Perumal, R., Asebedo, A., Bashir, E., Lamsal, A., et al., 2018. Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in Sorghum. Field Crops Res. 227, 1-10.
|
Choi, W.G., Toyota, M., Kim, S.H., Hilleary R, Gilroy, S., 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. U.S.A. 111, 6497-6502.
|
Christou, A., Manganaris, G.A., Papadopoulos, I., Fotopoulos, V., 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 64, 1953-1966.
|
Corpas, F.J., Del, Río, L.A., Palma, J.M., 2019. Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Integr. Plant Biol. 61, 803-816.
|
Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., Tari, I., 2014. Glutathione transferase supergene family in tomato:salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol. Bioch. 78, 15-26.
|
Dastogeer, K.M., Tumpa, F.H., Sultana, A., Akter, M.A., Chakraborty, A., 2020. Plant microbiome-an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23, 100161.
|
Davenport, R.J., Muñoz, Mayor, A., Jha, D., Essah, PA., Rus, A., Tester, M., 2007. Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497-507.
|
De, Sousa, Lopes, L., Prisco, J.T., Gomes, Filho, E., 2018. Inducing salt tolerance in castor bean through seed priming. Aust. J. Crop Sci. 12.
|
Demidchik, V., Maathuis, F.J., 2007. Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development. New Phytol. 175, 387-404.
|
Demidchik, V., Tester, M., 2002. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128, 379-387.
|
Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T.A., Pottosin, I., 2018. Calcium transport across plant membranes:mechanisms and functions. New Phytol. 220, 49-69.
|
Deng, P., Jing, W., Cao, C., Sun, M., Chi, W., Zhao, S., et al., 2022. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proc. Natl. Acad. Sci. U. S. A. 119, e2210338119.
|
Ding, P., Ding, Y., 2020. Stories of salicylic acid:a plant defense hormone. Trends Plant Sci. 25, 549-565.
|
Doblas, V.G., Geldner, N., Barberon, M., 2017. The endodermis, a tightly controlled barrier for nutrients. Curr. Opin. Plant Biol. 39, 136-143.
|
Dodd, I.C., Perez, Alfocea, F., 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63, 3415-3428.
|
Does, D.V.D., Boutrot, F., Engelsdorf, T., Rhodes, J., Zipfel, C., 2017. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PloS Genet. 13, e1006832.
|
Dos, Santos, Araújo, G., de, Oliveira, Paula-Marinho, S., de, Paiva, Pinheiro, S.K., de, Castro, Miguel, E., de, Sousa, Lopes, L., Camelo, Marques, E., de, Carvalho, H.H., Gomes-Filho, E., 2021. H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. Plant Sci. 303, 110774.
|
Du, J., Huang, Y., Xi, J., Cao, M., Ni, W., Chen, X., et al., 2008. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 56, 653-664.
|
Duan, L., Dietrich, D., Ng, C., Chan, P., Bhalerao, R., Bennett, M., Dinneny, J., 2013. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25, 324-341.
|
Duan, L., Sebastian, J., Dinneny, J.R., 2015. Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods. Mol. Biol. 1242, 105-122.
|
Duarte, B., Sleimi, N., Caçador, I., 2014. Biophysical and biochemical constraints imposed by salt stress:learning from halophytes. Front Plant Sci. 5, 746.
|
Dunlap, J.R., Binzel, M.L., 1996. NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol. 112, 379-384.
|
Eichmann, R., Richards, L., Schäfer, P., 2021. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518-541.
|
Essah, Pauline, A., Davenport, Romola, Tester, Mark, 2003. Sodium influx and accumulation in Arabidopsis. Plant Physiol. 133, 307-318.
|
Evans, M.J., Choi, W.G., Gilroy, S., Morris, R.J., 2016. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol. 171, 1771-1784.
|
Fatma, M., Iqbal, N., Gautam, H., Sehar, Z., Sofo, A., D'Ippolito, I., Khan, N.A., 2021. Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress. Plants 10, 180.
|
Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Maman, J., Steinhorst, L., Schmitz-Thom, I., 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28, 666-675.
|
Feki, K., Quintero, F.J., Pardo, J.M., Masmoudi, K., 2011. Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol. Biol. 76, 545-556.
|
Figueiredo, M.V., Burity, H.A., Martinez, C.R., Chanway, C.P., 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182-188.
|
Fisarakis, I., Chartzoulakis, K., Stavrakas, D., 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agr. Water Manage. 51, 13-27.
|
Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen, K.A., Bych, K., Schulz, A., Shabala, S., Schumaker, K.S., 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617-1634.
|
Galvan, Ampudia, C.S., Testerink., 2011. Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 14, 296-302.
|
Galvan, Ampudia, C.S., Julkowska, M.M., Darwish, E., Gandullo, J., Korver, R.A., Brunoud, G., Haring, M.A., Munnik, T., Vernoux, T., Testerink, C., 2013. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23, 2044-2050.
|
Gao, Z., Gao, S., Li, P., Zhang, Y., Ma, B., Wang, Y., 2021. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. Physiol. Plantarum 172, 162-175.
|
Gao, Z., Zhang, J., Zhang, J., Zhang, W., Zheng, L., Borjigin, T., Wang, Y., 2022. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiol. Bioch. 173, 46-58.
|
Geng, Y., Wu, R., Wee, C.W., Xie, F., Wei. X., Chan, P.M.Y., Tham, C., Duan, L., Dinneny, J.R., 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25, 2132-2154.
|
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch. 48, 909-930.
|
Glass, A., Siddiqi, M., 1985. Nitrate inhibition of chloride influx in Barley:implications for a proposed chloride homeostat, J. Exp. Bot. 36, 556-566.Gohari, G., Alavi, Z., Esfandiari, E., Panahirad, S., Hajihoseinlou, S., Fotopoulos, V., 2020. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol. Plantarum 168, 361-373.
|
Golani, Y., Kaye, Y., Gilhar, O., Ercetin, M., Gillaspy, G., Levine, A., 2013. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis. Mol. Plant 6, 1781-1794.
|
Gong, Q., Li, S., Zheng, Y., Duan, H., Xiao, F., Zhuang, Y., He, J., Wu, G., Zhao, S., Zhou, H., 2020. SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. Plant J. 102, 1157-1171.
|
Gu, D., Andreev, K., Dupre, M.E., 2021. Major trends in population growth around the world. China CDC Weekly 3, 604.
|
Guo, K.M., Babourina, O., Christopher, D.A., Borsics, T., Rengel, Z., 2008. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol. Plant 134, 499-507.
|
Guo, R., Zhao, L., Zhang, K., Lu, H., Bhanbhro, N., Yang, C., 2021. Comparative genomics and transcriptomics of the extreme halophyte Puccinellia tenuiflora provides insights into salinity tolerance differentiation between halophytes and glycophytes. Front Plant Sci. 12, 649001.
|
Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Kumar, M., Hasanuzzaman, M., 2022. Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. Int. J. Mol. Sci. 23, 3741.
|
Ha, Tran, D.M., Nguyen, T.T.M., Hung, S.H., Huang, E., Huang, C.C., 2021. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants:A review. Int. J. Mol. Sci. 22, 3154.
|
Hailu, B., Mehari, H., 2021. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas:A Review. J. Natural Sci. Res. 12, 1-10.
|
Halfter, U., Ishitani, M., Zhu, J.K., 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. P. Natl. A. Sci. 97, 3735-3740.
|
Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., Goh, T., Sato, M.H., Morita, M.T., Tasaka, M., 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023-2033.
|
Hamam, A.M., Coskun, D., Britto, D.T., Plett, D., Kronzucker, H.J., 2019. Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta 249, 1037-1051.
|
Hameed, A., Ahmed, M.Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., Nielsen, B.L., 2021. Effects of salinity stress on chloroplast structure and function. Cells 10, 2023.
|
Han, X., Yang, Y., 2021. Phospholipids in salt stress response. Plants 10, 2204.
|
Han, X., Yang, Y., Wu, Y., Liu, X., Lei, X., Guo, Y., 2017. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. J. Exp. Bot. 68, 2951-2962.
|
Hancock, J.T., Whiteman, M., 2016. Hydrogen sulfide signaling:interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci. 1365, 5-14.
|
Hao, R., Zhou, W., Li, J., Luo, M., Scheres, B., Guo, Y., 2023. On salt stress, PLETHORA signaling maintains root meristems. Dev. Cell, S1534-5807, 00327-1.
|
Haroon, U., Khizar, M., Liaquat, F., Ali, M., Akbar, M., Tahir, K., Batool, S.S., Kamal, A., Chaudhary, H.J., Munis, M.F.H., 2021. Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. J. Plant Growth Regul. 1-14.
|
He, X., Mu, R., Cao, W., Zhang, Z., Zhang, J., Chen, S., 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903-916.
|
Hewage, K.A.H., Yang, J.F., Wang, D., Hao, G.F., Yang, G.F., Zhu, J.K., 2020. Chemical manipulation of abscisic acid signaling:a new approach to abiotic and biotic stress management in agriculture. Adv. Sci. 7, 2001265.
|
Hilker, M., Schmülling, T., 2019. Stress priming, memory, and signalling in plants. Plant Cell Environ. 42, 753-761.
|
Hofmann, T., Lowry, G.V., Ghoshal, S., Tufenkji, N., Brambilla, D., Dutcher, J.R., Gilbertson, L.M., Giraldo, J.P., Kinsella, J.M., Landry, M.P., 2020. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416-425.
|
Huang, L., He, B., Han, L., Liu, J., Wang, H., Chen, Z., 2017. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total Environ. 601-602, 1097.
|
Hussain, S., Hussain, S., Ali, B., Ren, X., Chen, X., Li, Q., Saqib, M., Ahmad, N., 2021. Recent progress in understanding salinity tolerance in plants:Story of Na+/K+ balance and beyond. Plant Physiol. Bioch. 160, 239-256.
|
Iglesias, M.J., Terrile, M.C., Windels, D., Lombardo, M.C., Bartoli, C.G., Vazquez, F., Estelle, M., Casalongué, C.A., 2014. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PloS One 9, e107678.
|
Iswanto, A.B.B., Shon, J.C., Liu, K.H., Vu, M.H., Kumar, R., Kim, J.Y., 2020. Sphingolipids modulate secretion of glycosylphosphatidylinositol-anchored plasmodesmata proteins and callose deposition. Plant Physiol. 184, 407-420.
|
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., Shabala, S., 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 76, 25-40.
|
Jia, W., Zhang, J., Liang, J., 2001. Initiation and regulation of water deficit-induced abscisic acid accumulation in Maize leaves and roots:cellular volume and water relations. J. Exp. Bot. 52, 295-300.
|
Jiang, C., Belfield, E.J., Cao, Y., Smith, J.A.C., Harberd, N.P., 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25, 3535-3552.
|
Jiang, C., Belfield, E.J., Mithani, A., Visscher, A., Ragoussis, J., Mott, R., Smith, J.A.C., Harberd, N.P., 2012. ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J. 31, 4359-4370.
|
Jiang, J.L., Tian, Y., Li, L., Yu, M., Hou, R.P., Ren, X.M., 2019a. H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front. Plant Sci. 10, 678.
|
Jiang, Z., Zhou, X., Tao, M., Yuan, F., Liu, L., Wu, F., Wu, X., Xiang, Y., Niu, Y., Liu, F., 2019b. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ Influx. Nature 572, 341-346.
|
Jogawat, A., 2019. Osmolytes and their role in abiotic stress tolerance in plants. Molecular Plant Abiotic Stress:Biology and Biotechnology, 91-104.
|
Julkowska, M.M., Hoefsloot, H.C., Mol, S., Feron, R., de, Boer, G.J., Haring, M.A., Testerink, C., 2014. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol. 166, 1387-1402.
|
Kaldenhoff, R., Ribas, Carbo, M., Sans, J.F., Lovisolo, C., Heckwolf, M., Uehlein, N., 2008. Aquaporins and plant water balance. Plant Cell Environ. 31, 658-666.
|
Kaltdorf, Naseem, 2013. How many salicylic acid receptors does a plant cell need? Sci. Signal 6, jc3.
|
Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., Lee, Y., 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. U.S.A. 107, 2355-2360.
|
Kaplan, B., Sherman, T., Fromm, H., 2007. Cyclic nucleotide-gated channels in plants. FEBS Lett. 581, 2237-46.
|
Keisham, M., Mukherjee, S., Bhatla, S.C., 2018. Mechanisms of sodium transport in plants-progresses and challenges. Int. J. Mol. Sci. 19, 647.
|
Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A., Knight, M.R., 2000. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23, 267-278.
|
Kim, W.Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352.
|
Kimber, C., 2000. "Origins of domesticated sorghum and its early diffusion to India and China," in Sorghum:Origin, History, Technology, and Production, eds C. W. Smith and R. A. Frederiksen(New York, NY:John Wiley & Sons), 3-98.
|
Knight, H., Trewavas, A.J., Knight, M.R., 1997. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12, 1067-1078.
|
Kohei, H. Megumi, N., Katsuhisa, Y., et al., 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023-2033.
|
Korver, R.A., van, den. Berg, T., Meyer, A.J., Galvan, Ampudia, C.S., Ten, Tusscher, K.H., Testerink, C., 2020. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ. 43, 143-158.
|
Kugler, A., Köhler, B., Palme, K., Wolff, P., Dietrich, P., 2009. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol. 9, 140.
|
Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., Verma, J.P., 2020. Plant growth-promoting bacteria:biological tools for the mitigation of salinity stress in plants. Front. Microbiol. 11, 1216.
|
Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y., Shinozaki, K., 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. U.S.A. 107, 2361-2366.
|
Lakehal, A., Chaabouni, S., Cavel, E., Le, Hir, R., Ranjan, A., Raneshan, Z., Novák, O., Păcurar, D.I., Perrone, I., Jobert, F., 2019. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol. Plant 12, 1499-1514
|
Lan, Thi, Hoang, X., Du, Nhi, N.H., Binh, Anh, Thu, N., Phuong, Thao, N., Phan, Tran, L.S., 2017. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr. Genomics 18, 483-497.
|
Laohavisit, A., Richards, S.L., Shabala, L., Chen, C., Colaço, R.D., Swarbreck, S.M., Shaw, E., Dark, A., Shabala, S., Shang, Z., 2013. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol. 163, 253-262.
|
Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De, Smet, I., Fukaki, H., Beeckman, T., Bennett, M., Laplaze, L., 2013. Lateral root development in Arabidopsis:fifty shades of auxin. Trends Plant Sci. 18, 450-458.
|
Lee, S., Masclaux, Daubresse, C., 2021. Current understanding of leaf senescence in rice. Int. J. Mol. Sci. 22, 4515.
|
Leng, Q., Mercier, R.W., Hua, B.G., Fromm, H., Berkowitz, G.A., 2002., Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128, 400-410.
|
Leshem, Y., Melamed, Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G., Levine, A., 2006. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc. Natl. Acad. Sci. U.S.A. 103, 18008-18013.
|
Li, B., Tester, M., Gilliham, M., 2017a. Chloride on the move. Trends Plant Sci. 22, 236-248
|
Li, J., Shen, L., Han, X., He, G., Fan, W., Li, Y., Yang, S., Zhang, Z., Yang, Y., Jin, W., Wang, Y., Zhang, W., Guo, Y., 2023. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO j. 42, e11240.
|
Li, J., Zhou, H., Zhang, Y., Li, Z., Yang, Y., Guo, Y., 2020. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev. Cell 55, 367-380.
|
Li, J., Zhou, X., Wang, Y., Song, S., Ma, L., He, Q., Lu, M., Zhang, K., Yang, Y.Q., Zhao, Q., Jin, W., Jiang, C., Guo, Y., 2023. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J. Genet. Genomics, S1673-8527(23)00097-8.
|
Li, L., Wang, F., Yan, P., Jing, W., Zhang, C., Kudla, J., Zhang, W., 2017b. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol. 214, 1172-1187.
|
Li, W., Guan, Q., Wang, Z.Y., Wang, Y., Zhu, J., 2013. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. Mol. Plant 6, 1344-1354
|
Li, W., Song, T., Wallrad, L., Kudla, J., Wang, X., Zhang, W., 2019. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat. Plants 5, 1012-1021.
|
Li, X., Sun, P., Zhang, Y., Jin, C., Guan, C., 2020. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ. Exp. Bot. 174, 104023.
|
Li, Y., Hu, J., Qi, J., Zhao, F., Liu, J., Chen, L., Chen, L., Gu, J., Wu, H., Li, Z., 2022. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance. Stress Biology 2, 46.
|
Lim, P.O., Kim, H.J., Gil, Nam, H., 2007. Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136.
|
Lin, H., Yang, Y., Quan, R., Mendoza, I., Wu, Y., Du, W., Zhao, S., Schumaker, K.S., Pardo, J.M., Guo, Y., 2009. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21, 1607-1619.
|
Liu, X., Jiang, W., Li, Y., et al., 2023. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nat. Plants 9, 645-660.
|
Liu, L., Song, W., Huang, S., Jiang, K., Moriwaki, Y., Wang, Y., Men, Y., Zhang, D., Wen, X., Han, Z., Chai, J., Guo, H., 2022. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185, 3341-3355.
|
Lu, K., Song, R., Guo, J., Zhang, Y., Zuo, J., Chen, H., Liao, C., Hu, X., Ren, F., Lu, Y., Liu, W., 2023. CycC1; 1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. Plant Cell 35, 2570-2591.
|
Lu, Y., Yu, M., Jia, Y., Yang, F., Zhang, Y., Xu, X., Li, X., Yang, F., Lei, J., Wang, Y., Yang, G., 2022. Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat. Commun. 13, 5682.
|
Lu, Z., Yin, G., Chai, M., Sun, L., Wei, H., Chen, J., Yang, Y., Fu, X., Li, S., 2022. Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance. BMC Genomics 23, 560.
|
Lou, L., Yu, F., Tian, M., Liu, G., Wu, Y., Wu, Y., Xia, R., Pardo, J.M., Guo, Y., Xie, Q., 2020. ESCRT-I component VPS23A sustains salt tolerance by strengthening the SOS module in Arabidopsis. Mol. Plant 13, 1134-1148.
|
Ma, D.M., Xu, W.R., Li, H.W., Jin, F.X., Guo, L.N., Wang, J., Dai, H.J., Xu, X., 2014. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251, 219-231.
|
Ma, L., Han, R., Yang, Y., Liu, X., Li, H., Zhao, X., et al., 2023. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. Plant Cell 35, 2997-3020.
|
Ma, L., Ye, J., Yang, Y., Lin, H., Yue, L., Luo, J., Long, Y., Fu, H., Liu, X., Zhang, Y., 2019. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev. Cell 48, 697-709.
|
Mansour, M.M.F., 2022. Role of Vacuolar Membrane Transport Systems in Plant Salinity Tolerance. J. Plant Growth Regul. 42, 1364-1401.
|
Martin, Stpaul, N., Delzon, S., Cochard, H., 2017. Plant resistance to drought depends on timely stomatal closure. Ecol. Let. 20, 1437-1447.
|
Marulanda, A., Azcón, R., Chaumont, F., Ruiz, Lozano, J.M., Aroca, R., 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232, 533-543.
|
Martínez, Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., Quintero, F.J., 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143, 1001-1012.
|
Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., 2002. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. U.S.A. 99, 6428-6433.
|
Maurya, A.K., 2020. Oxidative stress in crop plants. Agronomic Crops:Stress Responses and Tolerance 3, 349-380.
|
Maxwell, D.P., Wang, Y., McIntosh, L., 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U.S.A. 96, 8271-8276.
|
Mazel, A., Leshem, Y., Tiwari, B.S., Levine, A., 2004. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134, 118-128.
|
Meng, D., Fricke, W., 2017. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiol. Bioch. 113, 64-77.
|
Miller, G., Suzuki, N., Ciftci, Yilmaz, S., Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453-467.
|
Mittler, R., Zandalinas, S.I., Fichman, Y., Van, Breusegem, F., 2022. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Bio. 23, 663-679.
|
Moradbeygi, H., Jamei, R., Heidari, R., Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272, 109537.
|
Morcillo, R.J., Manzanera, M., 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11, 337.
|
Mugwanya, M., Kimera, F., Dawood, M., Sewilam, H., 2022. Elucidating the effects of combined treatments of salicylic acid and L-proline on greenhouse-grown cucumber under saline drip irrigation. J. Plant Growth Regul. 42, 1-17.
|
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651-681
|
Mushtaq, A., Jamil, N., Riaz, M., Hornyak, G., Ahmed, N., Ahmed, S.S., Shahwani, M.N., Malghani, M.N.K., 2017. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. In:Biol. Forum., 150-157.
|
Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2009. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can. J. Microbiol. 55, 302-9.
|
Nie, K., Zhao, H., Wang, X., Niu, Y., Zhou, H., Zheng, Y., 2022. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. J. Integr. Plant Biol. 64, 930-941.
|
Nieves, Cordones, M., Alemán, F., Martínez, V., Rubio, F., 2010. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol. Plant 3, 326-333.
|
Nieves, Cordones, M., Alemán, F., Martínez, V., Rubio, F., 2014. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 171, 688-695.
|
Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283, 8885-8892.
|
Ohta, M., Guo, Y., Halfter, U., Zhu, J.K., 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. U.S.A. 100, 11771-11776.
|
Osman, K.T., 2018. Saline and sodic soils. In:Management of soil problems. Springer International Publishing, Cham, 255-298.
|
Pagano, A., Macovei, A., Balestrazzi, A., 2023. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 42, 657-688.
|
Paul, S., Roychoudhury, A., 2017. Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene 11, 124-132.
|
Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., Kadioglu, A., Shen, G., Zhang, H., 2016. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants. Plant Cell Physiol. 57, 1069-84.
|
Pennisi, E., 2009. How sorghum withstands heat and drought. Science 323, 323:573.
|
Pérez, Labrada, F., López, Vargas, E.R., Ortega, Ortiz, H., Cadenas, Pliego, G., Benavides, Mendoza, A., Juárez, Maldonado, A., 2019. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 8, 151.
|
Peters, C., Kim, S., Devaiah, S., Li, M., Wang, X., 2014. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 37, 2002-2013.
|
Pic, E., De, La, Serve, B.T., Tardieu, F., Turc, O., 2002. Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in Pea. Plant Physiol. 128, 236-246.
|
Pierzynski, G.M., Vance, G.F., Sims, J.T., 2005. Soils and environmental quality. CRC press.
|
Pottosin, I., Dobrovinskaya, O., 2014. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J. Plant Physiol. 171, 732-742.
|
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Drechsel, P., Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Natural Resources Forum 38, 282-295.
|
Qiao, W., Fan, L.M., 2008. Nitric oxide signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 50, 1238-1246.
|
Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M., Guo, Y., 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19, 1415-1431.
|
Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., Huang, R., 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports 7, 44637.
|
Quintero, F.J., Martinez, Atienza, J., Villalta, I., Jiang, X., Kim, W.Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.J., Zhu, J.K., 2011. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1(SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 108, 2611-2616.
|
Racchi, M.L., 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2, 340-369.
|
Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S.A., Kumari, P.H., Punita, D.L., Karumanchi, A.R., Reddy, P. S., Rathnagiri, P., Sreenivasulu, N., 2019. Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. Plant Signaling Molecules. Elsevier, 417-436.
|
Rasheed, F., Sehar, Z., Fatma, M., Iqbal, N., Masood, A., Anjum, N.A., Khan, N.A., 2021. Involvement of ethylene in reversal of salt stress by salicylic acid in the presence of sulfur in mustard(Brassica juncea L.). J. Plant Growth Regul. 41, 1-18.
|
Rawat, N., Singla, areek, S.L., Pareek, A., 2021. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plantarum 171, 653-676.
|
Rayle, D., Cleland, R., 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271-1274.
|
Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., Wu, W.H., 2013. Calcineurin B-like protein CBL 10 directly interacts with AKT 1 and modulates K+ homeostasis in Arabidopsis. Plant J. 74, 258-266.
|
Rengasamy, P., 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57, 1017-1023.
|
Rico, C.M., Peralta, Videa, J., Gardea, Torresdey, J., 2015. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. Nanotechnology and Plant Sciences:Nanoparticles and their Impact on Plants, 1-17.
|
Rodríguez, Navarro, A., Rubio, F., 2006. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57, 1149-1160.
|
Rosales, M.A., Franco, Navarro, J.D., Peinado, Torrubia, P., Díaz, Rueda, P., Álvarez, R., Colmenero, Flores, J.M., 2020. Chloride improves nitrate utilization and NUE in plants. Front. Plant Sci. 11, 442.
|
Rus, A., Lee, B.h,, Munoz, Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.K., Bressan, R.A., Hasegawa, P.M., 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136, 2500-2511.
|
Sagar, A., Rai, S., Ilyas, N., Sayyed, R., Al, Turki, A.I., El, Enshasy, H.A., Simarmata, T., 2022. Halotolerant rhizobacteria for salinity-stress mitigation:Diversity, mechanisms and molecular approaches. Sustainability 14, 490.
|
Saharan, B., Nehra, V., 2011. Plant growth promoting rhizobacteria:a critical review. Life Sci. Med. Res. 21, 30.
|
Saini, L.K., Singh, N., Pandey, G.K., 2020. Plant protein phosphatase 2C:critical negative regulator of ABA signaling. Protein Phosphatases and Stress Management in Plants:Functional Genomic Perspective, 83-102.
|
Samadi, S., Habibi, G., Vaziri, A., 2019. Exogenous trehalose alleviates the inhibitory effects of salt stress in Strawberry plants. Acta Physiol. Plant. 41, 1-11.
|
Sánchez, Barrena, M.J., Chaves, Sanjuan, A., Raddatz, N., Mendoza, I., Cortés, Á., Gago, F., González, Rubio, J.M., Benavente, J.L., Quintero, F.J., Pardo, J.M., 2020. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant Physiol. 182, 2143-2153.
|
Sapre, S., Gontia, Mishra, I., Tiwari, S., 2022. Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). J. Plant Growth Regul. 41, 647-656.
|
Savvides, A., Ali, S., Tester, M., Fotopoulos, V., 2016. Chemical priming of plants against multiple abiotic stresses:mission possible? Trends Plant Sci. 21, 329-340.
|
Sechet, J., Htwe, S., Urbanowicz, B., Agyeman, A., Feng, W., Ishikawa, T., Colomes, M., Kumar, K., Kawai, Yamada, M., Dinneny, J., O'Neill, M., Mortimer, J., 2018. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. Plant J. 96, 1036-1050.
|
Seo, M., Koshiba, T., 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48.
|
Shabala, S., Cuin, T.A., 2008. Potassium transport and plant salt tolerance. Physiol. Plantarum 133, 651-669.
|
Shabala, S., Wu, H., Bose, J., 2015. Salt stress sensing and early signalling events in plant roots:Current knowledge and hypothesis. Plant Sci. 241, 109-119.
|
Shahid, S.A., Zaman, M., Heng, L., 2018. Soil salinity:historical perspectives and a world overview of the problem. In:Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer International Publishing, Cham, 43-53.
|
Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012.
|
Shelke, D., Nikalje, G., Nikam, T., Maheshwari, P., Punita, D., Rao, K., Kavi, Kishor, P., Suprasanna, P., 2019. Chloride (Cl-) uptake, transport, and regulation in plant salt tolerance. Molecular Plant Abiotic Stress:Biology and Biotechnology, 241-268.
|
Shen, Z.j., Chen, J., Ghoto, K., Hu, W.J., Gao, G.f., Luo, M.R., Li, Z., Simon, M., Zhu, X.Y., Zheng, H.l., 2018. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiol. 38, 1605-1622.
|
Shi, H., Ishitani, M., Kim, C., Zhu, J.K., 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. U.S.A. 97, 6896-6901.
|
Singh, A., Bhatnagar, N., Pandey, A., Pandey, G.K., 2015. Plant phospholipase C family:regulation and functional role in lipid signaling. Cell Calcium 58, 139-146.
|
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savouré, A., 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433-447.
|
Sofy, M.R., Elhawat, N., Alshaal, T., 2020. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotox. Environ. Safe. 200, 110732
|
Song, T., Shi, Y., Shen, L., Cao, C., Shen, Y., Jing, W., Tian, Q., Lin, F., Li, W., Zhang, W., 2021. An endoplasmic reticulum-localized cytochrome b5 regulates high-affinity K+ transport in response to salt stress in rice. Proc. Natl. Acad. Sci. U. S. A. 118, e2114347118.
|
Steinhorst, L., He, G., Moore, L.K., Schültke, S., Schmitz, Thom, I., Cao, Y., et al., 2022. A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis. Developmental Cel. 57, 2081-2094.
|
Steudle, E., Peterson, C.A., 1998. How does water get through roots? J. Exp. Bot. 49, 775-788.
|
Su, Y., Luo, W., Lin, W., Ma, L., Kabir, M.H., 2015. Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants. Biol. Proced. Online 17, 1-13.
|
Sun, F., Zhang, W., Hu, H., Li, B., Wang, Y., Zhao, Y., Li, K., Liu, M., Li, X., 2008. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol. 146, 178-188.
|
Sun, J., Zhang, X., Deng, S., Zhang, C., Wang, M., Ding, M., Zhao, R., Shen, X., Zhou, X., Lu, C., 2012. Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PloS One 7, e53136.
|
Tabatabaei, S., Ehsanzadeh, P., 2016. Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54, 340-350.
|
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi, Shinozaki, K., Shinozaki, K., 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235-238.
|
Talebi, Atouei, M., Pourbabaee, A.A., Shorafa, M., 2019. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iran. J. Sci. Technol. A. 43, 2725-2733.
|
Talke, I.N., Blaudez, D., Maathuis, F.J., Sanders, D., 2003. CNGCs:prime targets of plant cyclic nucleotide signalling? Trends Plant Sci. 8, 286-93.
|
Tan, Y.Q., Yang, Y., Shen, X., Zhu, M., Shen, J., Zhang, W., Hu, H., Wang, Y.F., 2023. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 35, 239-259.
|
Tang, R., Yang, Y., Yang, L., Liu, H., Wang, C., Yu, M., Gao, X., Zhang, H., 2014. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ. 37, 573-88.
|
Tan, T., Cai, J., Zhan, E., Yang, Y., Zhao, J., Guo, Y., Zhou, H., 2016. Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Plant Mol. Biol. 92, 391-400.
|
Tanudjaja, E., Hoshi, N., Yamamoto, K., Ihara, K., Furuta, T., Tsujii, M., Ishimaru, Y., Uozumi, N., 2023.
|
Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J. Biol. Chem. 299, 102846.
|
Tanveer, M., Shah, A.N., 2017. An insight into salt stress tolerance mechanisms of Chenopodium album. Environ. Sci. Pollut. Res. Int. 24, 16531-16535.
|
Tenhaken, R., 2015. Cell wall remodeling under abiotic stress. Front. Plant Sci. 5, 771.
|
Tester, M., Davenport, R., 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527.
|
Thalmann, M., Santelia, D., 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214, 943-951.
|
Thieme, C., Rojas, Triana, M., Stecyk, E., et al., 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025.
|
Thomson, S.J., Hansen, A., Sanguinetti, M.C., 2015. Identification of the intracellular Na+ sensor in Slo2.1 potassium channels. J. Biol. Chem.290, 14528-14535.
|
Uchiyama, T., Saito, S., Yamanashi, T., Kato, M., Takebayashi, K., Hamamoto, S., et al., 2023. The HKT1 Na+ transporter protects plant fertility by decreasing Na+ content in stamen filaments. Sci. Adv. 9, eadg5495.
|
Upadhyay, S., Singh, J., Singh, D., 2011. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21, 214-222.
|
Vaishnav, A., Kumari, S., Jain, S., Varma, A., Choudhary, D., 2015. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 119, 539-551.
|
Vaishnav, A., Varma, A., Tuteja, N., Choudhary, D.K., 2016. PGPR-mediated amelioration of crops under salt stress. Plant-Microbe Interaction:an Approach to Sustainable Agriculture, 205-226.
|
Valenzuela, C.E., Acevedo, Acevedo, O., Miranda, G.S., Vergara, Barros, P., Holuigue, L., Figueroa, C.R., Figueroa, P.M., 2016. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J. Exp. Bot. 67, 4209-4220
|
Van, den, Berg, T., Korver, R.A., Testerink, C., Ten, Tusscher, K.H., 2016. Modeling halotropism:a key role for root tip architecture and reflux loop remodeling in redistributing auxin. Development 143, 3350-3362.
|
Van, Zelm, E., Zhang, Y., Testerink, C., 2020b. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403-433.
|
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le, Van, A., Dufresne, A., 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196-1206.
|
Vanlerberghe, G.C., 2013. Alternative oxidase:a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 14, 6805-6847.
|
Verslues, P.E., Batelli, G., Grillo, S., Agius, F., Kim, Y.S., Zhu, J., Agarwal, M., Katiyar, Agarwal, S., Zhu, J.K., 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol. Cell. Biol. 27, 7771-7780.
|
Wang, B., Zhang, H., Huai, J., Peng, F., Wu, J., Lin, R., Fang, X., 2022. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18, 1-9.
|
Wang, L., Cao, S., Wang, P., Lu, K., Song, Q., Zhao, F.J., Chen, Z.J., 2021. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc. Natl. Acad. Sci. U. S. A. 118, e202398111.
|
Wang, M., Zheng, Q., Shen, Q., Guo, S., 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370-7390.
|
Wang, Y., Fang, Z., Yang, L., Chan, Z., 2021. Transcriptional variation analysis of Arabidopsis ecotypes in response to drought and salt stresses dissects commonly regulated networks. Physiol. Plantarum 172, 77-90.
|
Wang, Y., He, L., Li, H.D., Xu, J., Wu, W.H., 2010. Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res. 20, 826-837.
|
Wang, Y., Li, K., Li, X., 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 166, 1637-1645.
|
Wani, A.S., Ahmad, A., Hayat, S., Tahir, I., 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol. Biochem. 135, 385-394.
|
Wei, H., Wang, X., He, Y., Xu, H., Wang, L., 2021. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J. 40, e105086.
|
Wen, Z., Tyerman, S.D., Dechorgnat, J., Ovchinnikova, E., Dhugga, K.S., Kaiser, B.N., 2017. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell 29, 2581-2596.
|
Xiao, F., Zhou, H., 2022. Plant salt response:Perception, signaling, and tolerance. Front. Plant Sci. 13, 1053699.
|
Xu, S.L., Rahman, A., Baskin, T.I., Kieber, J.J., 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 3065-3079.
|
Yan, J., Liu, Y., Yang, L., He, H., Huang, Y., Fang, L., Scheller, H.V., Jiang, M., Zhang, A., 2021. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Mol. Plant 14, 411-425.
|
Yancey, P., Clark, M., Hand, S., Bowlus, R., Somero, G., 1982. Living with water stress:evolution of osmolyte systems. Science 217, 1214-1222.
|
Yang, G., Wang, Y., Xia, D., Gao, C., Wang, C., Yang, C., 2014. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss. Org. 117, 99-112.
|
Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., Gong, Z., 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2, 22-31.
|
Yang, Y., Guo, Y., 2018a. Unraveling salt stress signaling in plants. J. Integr. Plant Biol 60, 796-804.
|
Yang, Y., Guo, Y., 2018b. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523-539.
|
Yang, Y., Han, X., Ma, L., Wu, Y., Liu, X., Fu, H., Liu, G., Lei, X., Guo, Y., 2021. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Mol. Plant 14, 2000-2014.
|
Yang, Y., Yao, Y., Li, J., Zhang, J., Zhang, X., Hu, L., Ding, D., Bakpa, E.P., Xie, J., 2022. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front Plant Sci. 13, 623.
|
Yang, Z., Wang, C., Xue, Y., Liu, X., Chen, S., Song, C., Yang, Y., Guo, Y., 2019a. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10, 1199.
|
Yao, H., Xue, H., 2018. Phosphatidic acid plays key roles regulating plant development and stress responses. J. Integr. Plant Biol. 60, 851-863.
|
Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 61, 1673-1689.
|
Yildirim, E., Turan, M., Guvenc, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nut. 31, 593-612.
|
Yin, P., Liang, X., Zhao, H., Xu, Z., Chen, L., Yang, X., et al., 2023. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize. Mol. Plant 16, 1031-1047.
|
Yu, B., Zheng, W., Xing, L., Zhu, J.K., Persson, S., Zhao, Y., 2022. Root twisting drives halotropism via stress-induced microtubule reorientation. Dev. Cell 57, 2412-2425.
|
Yu, J., Zhu, C., Xuan, W., An, H., Tian, Y., Wang, B., Chi, W., Chen, G., Ge, Y., Li, J., Dai, Z., Liu, Y., Sun, Z., Xu, D., Wang, C., Wan, J., 2023. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 14, 3550.
|
Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Xiao, Y., Liang, Y., Zhang, W., 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762-773.
|
Yu, Y., Zhang, H., Xing, H., Cui, N., Liu, X., Meng, X., Wang, X., Fan, L., Fan, H., 2021. Regulation of growth and salt resistance in cucumber seedlings by hydrogen-rich water. J. Plant Growth Regul., 1-20.
|
Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371.
|
Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J.M., Shen. Q., 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci. Rep. 5, 1-8.
|
Zahedi, S.M., Hosseini, M.S., Naghmeh, D., Abadía, J., Germ, M., Gholami, R., Abdelrahman, M., 2022. Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers. Agri. Water Manage. 261.
|
Zelm, E., Zhang, Y., Testerink, C., 2020. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 71, 403-433.
|
Zepeda, Jazo, I., Velarde, Buendía, A.M., Enríquez, Figueroa, R., Bose, J., Shabala, S., Muñiz, Murguía, J., 2011. Pottosin II Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol. 157, 2167-2180.
|
Zhan, Q., Shen, J., Nie, K., Zheng, Y., 2023. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis. Plant Sci. 332, 111717.
|
Zhang, F., Li, L., Jiao, Z., Chen, Y., Liu, H., Chen, X., Fu, J., Wang, G., Zheng, J., 2016. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci. 253, 118-129.
|
Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., et al., 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379, eade8416.
|
Zhang, H., Zhu, J., Gong, Z., Zhu, J.K., 2022a. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104-119.
|
Zhang, M., Liang, X., Wang, L., Cao, Y., Song, W., Shi, J., Lai, J., Jiang, C., 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants 5, 1297-1308.
|
Zhang, M., Li, Y., Liang, X., Lu, M., Lai, J., Song, W., Jiang, C., 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnol. J. 21, 97-108.
|
Zhang, Q., Lin, F., Mao, T., Nie, J., Yan, M., Yuan, M., Zhang, W., 2012. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555-4576.
|
Zhang, X., Zhang, L., Ma, C., Su, M., Wang, J., Zheng, S., Zhang, T., 2022b. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Sci. Hortic. 297, 110962.
|
Zhang, Y., Hou, K., Qian, H., Gao, Y., Fang, Y., Xiao, S., Tang, S., Zhang, Q., Qu, W., Ren, W., 2022c. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. The Sci. Total Environ.837, 155808.
|
Zhang, Y., Xu, Y., Skaggs, T.H., Ferreira, J.F.S., Chen, X., Sandhu, D., 2023. Plantphase extraction:a method for enhanced discovery of the RNA-binding proteome and its dynamics in plants. Plant Cell 35, 2750-2772.
|
Zhang, Z., Zhang, S., Zhang, Y., Wang, X., Li, D., Li, Q., Yue, M., Li, Q., Zhang, Y.E., Xu, Y., 2011. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23, 396-411.
|
Zhao, B., Liu, Q., Wang, B., Yuan, F., 2021a. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 69, 3566-3584.
|
Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., Li, Y., Xie, S., Li, Y., Long, T., 2021b. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl. Sci. Rev. 8, nwaa149.
|
Zhao, C., Zayed, O., Yu, Z., Jiang, W., Zhu, P., Hsu, C.C., Zhang, L., Tao, W.A., Lozano, Durán, R., Zhu, J.K., 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, 13123-13128.
|
Zhao, C., Zhang, H., Song, C., Zhu, J.K., Shabala, S., 2020. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation Camb. 1, 100017.
|
Zhao, G., Cheng, P., Zhang, T., Abdalmegeed, D., Xu, S., Shen, W., 2021c. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotox. Environ. Safe. 224, 112640.
|
Zhao, H., Li, Z., Wang, Y., Wang, J., Xiao, M., Liu, H., Quan, R., Zhang, H., Huang, R., Zhu, L., Zhang, Z., 2022. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnol. J. 20, 468-484.
|
Zheng, Y., Chen, Z., Ma, L., Liao, C., 2018. The Ubiquitin E3 Ligase RHA2b Promotes Degradation of MYB30 in Abscisic Acid Signaling. Plant Physiol. 178, 428-440.
|
Zhou, H., Lin, H., Chen, S., Becker, K., Yang, Y., Zhao, J., Kudla, J., Schumaker, K.S., Guo,Y., 2014.Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. The Plant Cell 26, 1166-1182.
|
Zhou, H., Xiao, F., Zheng, Y., Liu, G., Zhuang, Y., Wang, Z., Zhang, Y., He, J., Fu, C., Lin, H., 2022a. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. Plant Cell 34, 927-944.
|
Zhou, X., Li, J., Wang, Y., Liang, X., Zhang, M., Lu, M., Guo, Y., Qin, F., Jiang, C., 2022b. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236, 479-494.
|
Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell 167, 313-324.
|
Zhu, J.K., 2003.Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441-445.
|
Zhu, M., Li, Q., Zhang, Y., Zhang, M., Li, Z., 2022. Glycine betaine increases salt tolerance in maize (Zea mays L.) by regulating Na+ homeostasis. Front. Plant Sci. 13, 978304.
|
Zulfiqar, F., 2021. Effect of seed priming on horticultural crops. Scientia Horticulturae 286:110197
|
Zulfiqar, F., Akram, N.A., Ashraf, M., 2020. Osmoprotection in plants under abiotic stresses:New insights into a classical phenomenon. Planta 251, 1-17.
|
Zulfiqar, F., Nafees, M., Chen, J., Darras, A., Ferrante, A., Hancock, J.T., Ashraf, M., Zaid, A., Latif, N., Corpas, F.J., 2022. Chemical priming enhances plant tolerance to salt stress. Front. Plant Sci. 13, 946922.
|
Zwiewka, M., Nodzyński, T., Robert, S., Vanneste, S., Friml, J., 2015. Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana. Mol. Plant 8, 1175-1187.
|