5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

A mutation in TBXT causes congenital vertebral malformations in humans and mice

doi: 10.1016/j.jgg.2023.09.009
Funds:

This work was supported by the National Key R&D Program of China (2021YFC2701101 to H.W. and X.Y.), the National Natural Science Foundation of China (81930036, 82150008 to H.W., and 31000542 to X.Y.), and the Commission of Science and Technology of Shanghai Municipality (20JC1418500 to H.W.).

  • Received Date: 2023-03-05
  • Revised Date: 2023-09-14
  • Accepted Date: 2023-09-16
  • Available Online: 2023-09-24
  • T-box transcription factor T (TBXT; T) is required for mesodermal formation and axial skeletal development. Although it has been extensively studied in various model organisms, human congenital vertebral malformations (CVMs) involving T are not well established. Here, we report a family with 15 CVM patients distributed across four generations. All affected individuals carry a heterozygous mutation, T c.596A>G (p.Q199R), which is not found in unaffected family members, indicating co-segregation of the genotype and phenotype. In vitro assays show that T p.Q199R increases the nucleocytoplasmic ratio and enhances its DNA-binding affinity, but reduces its transcriptional activity compared to the wild-type. To determine the pathogenicity of this mutation in vivo, we generated a Q199R knock-in mouse model that recapitulates the human CVM phenotype. The heterozygous Q199R mice show subtle kinked or shortened tails, while the homozygous mice exhibit tail filaments and severe vertebral deformities. Overall, we show that the Q199R mutation in T causes CVM in humans and mice, providing new evidence supporting the function of T in the genetic etiology of human CVM.

  • loading
  • Alexander, P.G., and Tuan, R.S., 2010. Role of environmental factors in axial skeletal dysmorphogenesis.Birth Defects Res. C Embryo Today. 90, 118-132.
    Beisaw, A., Tsaytler, P., Koch, F., Schmitz, S.U., Melissari, M.T., Senft, A.D., Wittler, L., Pennimpede, T., Macura, K., Herrmann, B.G., et al., 2018. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 19, 118-134.
    Chalamalasetty, R.B., Garriock, R.J., Dunty, W.C., Kennedy, M.W., Jailwala, P., Si, H., Yamaguchi, T.P., 2014. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation.Development. 141, 4285-4297.
    Chesley, P., 1935. Development of the short-tailed mutant in the house mouse. J. Exp. Zool. 70, 429- 459.
    Choi, K.S., Lee, C., Harfe, B.D., 2012. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs. Mech. Dev. 129, 255-262.
    Cornier, A.S., Staehling-Hampton, K., Delventhal, K.M., Saga, Y., Caubet, J.F., Sasaki, N., Ellard, S., Young, E., Ramirez, N., Carlo, S.E., et al., 2008. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am. J. Hum. Genet. 82, 1334-1341.
    Dai, Z., Li, R., Hou, Y., Li, Q., Zhao, K., Li, T., Li, M.J., Wu, X., 2021. Inducible CRISPRa screen identifies putative enhancers. J. Genet. Genomics. 48, 917-927.
    Dunty, W.C., Jr., Biris, K.K., Chalamalasetty, R.B., Taketo, M.M., Lewandoski, M., Yamaguchi, T.P., 2008. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development. 135, 85-94.
    Feng, X., Cheung, J.P.Y., Je, J.S.H., Cheung, P.W.H., Chen, S., Yue, M., Wang, N., Choi, V.N.T., Yang, X., Song, Y.Q., et al., 2020. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J. Orthop. Res. 39, 971-988.
    Giampietro, P.F., Raggio, C.L., Blank, R.D., McCarty, C., Broeckel, U., Pickart, M.A., 2013. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol.Syndromol. 4, 94-105.
    Haworth, K., Putt, W., Cattanach, B., Breen, M., Binns, M., Lingaas, P., Edwards, Y.H., 2001. Canine homolog of the T-box transcription factor T; failure of the protein to bind to its DNA target leads to a short-tail phenotype. Mamm. Genome. 12, 212-218.
    Hedequist, D., and Emans, J., 2007. Congenital scoliosis:a review and update. J. Pediatr. Orthop. 27, 106-116.
    Herrmann, B.G., Labeit, S., Poustka, A., King, T.R., Lehrach, H., 1990. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 343, 617-622.
    Jose-Edwards, D.S., Oda-Ishii, I., Kugler, J.E., Passamaneck, Y.J., Katikala, L., Nibu, Y., Di Gregorio, A., 2015. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet. 11, e1005730.
    Kispert, A., and Hermann, B.G., 1993. The Brachyury gene encodes a novel DNA binding protein. The EMBO J. 12, 3211-3220.
    Kispert, A., Koschorz, B., Herrmann, B.G., 1995. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763-4772.
    Knezevic, V., De Santo, R., Mackem, S., 1997. Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Development. 124, 411-419.
    Lolas, M., Valenzuela, P.D., Tjian, R., Liu, Z., 2014. Charting Brachyury-mediated developmental pathways during early mouse embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 4478-4483.
    McGaughran, J.M., Oates, A., Donnai, D., Read, A.P., Tassabehji, M., 2003. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur. J. Hum. Genet. 11, 468-474.
    Park, C.H.T., Pruitt, J.H., Bennett, D., 1989. A mouse model for neural tube defects:the curtailed (Tc)mutation produces spina bifida occulta in Tc/+ animals and spina bifida with meningomyelocele in Tc/t. Teratology. 39, 303-312.
    Pennimpede, T., Proske, J., Konig, A., Vidigal, J.A., Morkel, M., Bramsen, J.B., Herrmann, B.G., Wittler, L., 2012. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372, 55-67.
    Postma, A.V., Alders, M., Sylva, M., Bilardo, C.M., Pajkrt, E., van Rijn, R.R., Schulte-Merker, S., Bulk, S., Stefanovic, S., Ilgun, A., et al., 2014. Mutations in the T (brachyury) gene cause a novel syndrome consisting of sacral agenesis, abnormal ossification of the vertebral bodies and a persistent notochordal canal. J. Med. Genet. 51, 90-97.
    Rigueur, D., and Lyons, K.M., 2014. Whole-mount skeletal staining. Methods Mol. Biol. 1130, 113-121.
    Schifferl, D., Scholze-Wittler, M., Wittler, L., Veenvliet, J.V., Koch, F., Herrmann, B.G., 2021. A 37 kb region upstream of brachyury comprising a notochord enhancer is essential for notochord and tail development. Development. 148, dev200059.
    Schultemerker, S., Vaneeden, F.J.M., Halpern, M.E., Kimmel, C.B., Nussleinvolhard, C., 1994. no tail(ntl) is the zebrafish homolog of the mouse-T (Brachyury) Gene. Development 120, 1009-1015.
    Sharifnia, T., Wawer, M.J., Chen, T., Huang, Q.Y., Weir, B.A., Sizemore, A., Lawlor, M.A., Goodale, A., Cowley, G.S., Vazquez, F., et al., 2019. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 25, 292-300.
    Sheppard, H.E., Dall'Agnese, A., Park, W.D., Shamim, M.H., Dubrulle, J., Johnson, H.L., Stossi, F., Cogswell, P., Sommer, J., Levy, J., et al., 2021. Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Rep. Med. 2, 100188.
    Sparrow, D.B., Chapman, G., Smith, A.J., Mattar, M.Z., Major, J.A., O'Reilly, V.C., Saga, Y., Zackai, E.H., Dormans, J.P., Alman, B.A., et al., 2012. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell. 149, 295-306.
    Sparrow, D.B., Guillen-Navarro, E., Fatkin, D., Dunwoodie, S.L., 2008. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761-3766.
    Stott, D., Kispert, A., and Herrmann, B.G., 1993. Rescue of the tail defect of Brachyury mice. Genes Dev. 7, 197-203.
    Weiss, H.R., and Moramarco, M., 2016. Congenital Scoliosis (Mini-review). Curr. Pediatr. Rev. 12, 43- 47.
    Wu, N., Ming, X., Xiao, J., Wu, Z., Chen, X., Shinawi, M., Shen, Y., Yu, G., Liu, J., Xie, H., et al., 2015.TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N. Engl. J. Med. 372, 341-350.
    Wynnedavies, R., 1975. Congenital vertebral anomalies:aetiology and relationship to spina bifida cystica.J. Med. Genet. 12, 280-288.
    Zhao, J.Y., Qiao, B., Duan, W.Y., Gong, X.H., Peng, Q.Q., Jiang, S.S., Lu, C.Q., Chen, Y.J., Shen, H.B., Huang, G.Y., et al., 2014. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations. Eur. Heart J. 35, 733-742.
    Zhu, J.J., Kwan, K.M., Mackem, S., 2016. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl. Acad. Sci. U. S. A. 113, 3820-3825.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return