9.9
CiteScore
7.1
Impact Factor
Volume 51 Issue 9
Sep.  2024

microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation

doi: 10.1016/j.jgg.2024.03.016
Funds:

This work was supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYZD20220002), the National Natural Science Foundation of China (82071357), and the Ministry of Science and Technology of China (2019YFA0405600 to B.H.).

  • Received Date: 2024-03-26
  • Accepted Date: 2024-03-30
  • Rev Recd Date: 2024-03-30
  • Available Online: 2025-06-06
  • Publish Date: 2024-04-04
  • MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
  • Adula, K.P., Shorey, M., Chauhan, V., Nassman, K., Chen, S.F., Rolls, M.M., Sagasti, A., 2022. The MAP3Ks DLK and LZK direct diverse responses to axon damage in zebrafish peripheral neurons. J. Neurosci. 42, 6195-6210.
    Awasthi, A., Ramachandran, B., Ahmed, S., Benito, E., Shinoda, Y., Nitzan, N., Heukamp, A., Rannio, S., Martens, H., Barth, J., et al., 2019. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science 363, eaav1483.
    Bradbury, E.J., Burnside, E.R., 2019. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10, 3879.
    Canty, A.J., Huang, L., Jackson, J.S., Little, G.E., Knott, G., Maco, B., De Paola, V., 2013. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat. Commun. 4, 2038.
    Carthew, R.W., Sontheimer, E.J., 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642-655.
    Chen, M., Huang, R.C., Yang, L.Q., Ren, D.L., Hu, B., 2019. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J. 33, 7721-7733.
    Curcio, M., Bradke, F., 2018. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu. Rev. Cell Dev. Biol. 34, 495-521.
    Diekmann, H., Kalbhen, P., Fischer, D., 2015. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration. Front. Cell. Neurosci. 9, 251.
    Diener, C., Keller, A., Meese, E., 2022. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 38, 613-626.
    Dillon, C., Goda, Y., 2005. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25-55.
    Disner, G.R., Falcao, M.A.P., Lima, C., Lopes-Ferreira, M., 2021. In silico target prediction of overexpressed microRNAs from LPS-challenged zebrafish (Danio rerio) treated with the novel anti-Inflammatory peptide TnP. Int. J. Mol. Sci. 22, 7117.
    Ebert, M.S., Neilson, J.R., Sharp, P.A., 2007. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721-726.
    Egashira, Y., Kumade, A., Ojida, A., Ono, F., 2022. Spontaneously recycling synaptic vesicles constitute readily releasable vesicles in intact neuromuscular synapses. J. Neurosci. 42, 3523-3536.
    Ferragut Cardoso, A.P., Banerjee, M., Nail, A.N., Lykoudi, A., States, J.C., 2021. miRNA dysregulation is an emerging modulator of genomic instability. Semin. Cancer Biol. 76, 120-131.
    Ghibaudi, M., Boido, M., Vercelli, A., 2017. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog. Neurobiol. 158, 69-93.
    Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., Schier, A.F., 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-838.
    Goda, Y., Stevens, C.F., 1998. Readily releasable pool size changes associated with long term depression. Proc. Natl. Acad. Sci. U. S. A. 95, 1283-1288.
    Gonzalez-Forero, D., Montero, F., Garcia-Morales, V., Dominguez, G., Gomez-Perez, L., Garcia-Verdugo, J.M., Moreno-Lopez, B., 2012. Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles. J. Neurosci. 32, 68-84.
    Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., Bastiani, M., 2009. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802-806.
    Hilbush, B.S., Morgan, J.I., 1994. A third synaptotagmin gene, Syt3, in the mouse. Proc. Natl. Acad. Sci. U. S. A. 91, 8195-8199.
    Hilton, B.J., Husch, A., Schaffran, B., Lin, T.C., Burnside, E.R., Dupraz, S., Schelski, M., Kim, J., Muller, J.A., Schoch, S., et al., 2022. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51-69, e57.
    Hu, B.B., Chen, M., Huang, R.C., Huang, Y.B., Xu, Y., Yin, W., Li, L., Hu, B., 2018. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp. Neurol. 300, 67-73.
    Huang, R., Chen, M., Yang, L., Wagle, M., Guo, S., Hu, B., 2017. MicroRNA-133b negatively regulates zebrafish single Mauthner-cell axon regeneration through targeting tppp3 in Vivo. Front. Mol. Neurosci. 10, 375.
    Hui, E., Bai, J., Wang, P., Sugimori, M., Llinas, R.R., Chapman, E.R., 2005. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. Proc. Natl. Acad. Sci. U. S. A. 102, 5210-5214.
    Hung, I.C., Hsiao, Y.C., Sun, H.S., Chen, T.M., Lee, S.J., 2016. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics 17, 922.
    Huntwork-Rodriguez, S., Wang, B., Watkins, T., Ghosh, A.S., Pozniak, C.D., Bustos, D., Newton, K., Kirkpatrick, D.S., Lewcock, J.W., 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J. Cell Biol. 202, 747-763.
    Kaeser, P.S., Regehr, W.G., 2017. The readily releasable pool of synaptic vesicles. Curr. Opin. Neurobiol. 43, 63-70.
    Kim, V.N., Han, J., Siomi, M.C., 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139.
    Lau, K., Lai, K.P., Bao, J.Y., Zhang, N., Tse, A., Tong, A., Li, J.W., Lok, S., Kong, R.Y., Lui, W.Y., et al., 2014. Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One 9, e110698.
    Li, Y., He, X., Kawaguchi, R., Zhang, Y., Wang, Q., Monavarfeshani, A., Yang, Z., Chen, B., Shi, Z., Meng, H., et al., 2020. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613-618.
    Liu, D., Yu, Y., Schachner, M., 2014. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish. Exp. Neurol. 261, 196-205.
    Mahar, M., Cavalli, V., 2018. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323-337.
    Martens, S., Kozlov, M.M., McMahon, H.T., 2007. How synaptotagmin promotes membrane fusion. Science 316, 1205-1208.
    Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., Xu, B., Connolly, L., Kramvis, I., Sahin, M., et al., 2008. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963-966.
    Quan, Y.Z., Wei, W., Ergin, V., Rameshbabu, A.P., Huang, M., Tian, C., Saladi, S.V., Indzhykulian, A.A., Chen, Z.Y., 2023. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc. Natl. Acad. Sci. U. S. A. 120, e2215253120.
    Schmidt, J.T., Morgan, P., Dowell, N., Leu, B., 2002. Myosin light chain phosphorylation and growth cone motility. J. Neurobiol. 52, 175-188.
    Smith, P.D., Sun, F., Park, K.K., Cai, B., Wang, C., Kuwako, K., Martinez-Carrasco, I., Connolly, L., He, Z., 2009. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617-623.
    Snider, W.D., Zhou, F.-Q., Zhong, J., Markus, A., 2002. Signaling the pathway to regeneration. Neuron 35, 13-16.
    Soares, A.R., Pereira, P.M., Santos, B., Egas, C., Gomes, A.C., Arrais, J., Oliveira, J.L., Moura, G.R., Santos, M.A., 2009. Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 10, 195.
    Srinivasan, G., Kim, J.H., von Gersdorff, H., 2008. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J. Neurophysiol. 99, 1810-1824.
    Strickland, I.T., Richards, L., Holmes, F.E., Wynick, D., Uney, J.B., Wong, L.F., 2011. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 6, e23423.
    Sugita, S., Shin, O.H., Han, W., Lao, Y., Sudhof, T.C., 2002. Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J. 21, 270-280.
    Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S.M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., et al., 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344-357.
    Thomson, D.W., Dinger, M.E., 2016. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272-283.
    Vaden, J.H., Banumurthy, G., Gusarevich, E.S., Overstreet-Wadiche, L., Wadiche, J.I., 2019. The readily-releasable pool dynamically regulates multivesicular release. Elife 8, e47434.
    Vrljic, M., Strop, P., Ernst, J.A., Sutton, R.B., Chu, S., Brunger, A.T., 2010. Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nat. Struct. Mol. Biol. 17, 325-331.
    Wei, C., Wang, B., Peng, D., Zhang, X., Li, Z., Luo, L., He, Y., Liang, H., Du, X., Li, S., et al., 2022. Pan-Cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. Front. Immunol. 13, 849592.
    Weingarten, D.J., Shrestha, A., Juda-Nelson, K., Kissiwaa, S.A., Spruston, E., Jackman, S.L., 2022. Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 611, 320-325.
    Wen, H., Linhoff, M.W., McGinley, M.J., Li, G.L., Corson, G.M., Mandel, G., Brehm, P., 2010. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107, 13906-13911.
    Wu, X., Hu, S., Kang, X., Wang, C., 2020. Synaptotagmins: beyond presynaptic neurotransmitter release. Neuroscientist 26, 9-15.
    Xu, J., Mashimo, T., Sudhof, T.C., 2007. Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 567-581.
    Yan, D., Wu, Z., Chisholm, A.D., Jin, Y., 2009. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138, 1005-1018.
    Yoshimoto, T., Kittaka, M., Doan, A.A.P., Urata, R., Prideaux, M., Rojas, R.E., Harding, C.V., Henry Boom, W., Bonewald, L.F., Greenfield, E.M., et al., 2022. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat. Commun. 13, 6648.
    Zhang, H., Kong, Q., Wang, J., Jiang, Y., Hua, H., 2020. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp. Hematol. Oncol. 9, 32.
    Zhang, C., Chen, H., He, Q., Luo, Y., He, A., Tao, A., Yan, J., 2021. Fibrinogen/AKT/Microfilament axis promotes colitis by enhancing vascular permeability. Cell. Mol. Gastroenterol. Hepatol. 11, 683-696.
    Zhao, C., Rao, J.-S., Duan, H., Hao, P., Shang, J., Fan, Y., Zhao, W., Gao, Y., Yang, Z., Sun, Y.E., et al., 2022. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct. Target. Ther. 7, 184.
    Zhou, B., Yu, P., Lin, M.Y., Sun, T., Chen, Y., Sheng, Z.H., 2016. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103-119.
  • Relative Articles

    [1]Xi Yang, Changkun Pan, Meitong Ye, Jinshuo Liang, Haoyang Cheng, Qing Liang, Shu Huang, Jianshu Wang, Hoi Yee Chow, Haihuai He. Drosophila adhesion GPCR Remoulade regulates axon growth, branching, and guidance by modulating Rac1 GTPase[J]. Journal of Genetics and Genomics, 2024, 51(4): 458-461. doi: 10.1016/j.jgg.2023.11.006
    [2]Jie Wen, Jiangming Deng, Ting Xiao, Yu Liu, Wen Meng. Adipose Rheb deficiency promotes miR-182-5p expression via the cAMP/PPARγ signaling pathway[J]. Journal of Genetics and Genomics, 2023, 50(1): 20-26. doi: 10.1016/j.jgg.2022.04.013
    [3]Baijie Jin, Nannan Li, Lina Pang, Jing Xiao, Ziyi Lin, Ning Li, Zimei Dong, Guangwen Chen, Fei Yu, Dezeng Liu. Systematic identification and screening of functional long noncoding RNAs during planarian regeneration[J]. Journal of Genetics and Genomics, 2023, 50(12): 1018-1021. doi: 10.1016/j.jgg.2023.08.003
    [4]Xiuyun Xu, Gan Xiong, Ming Zhang, Jiaxiang Xie, Shuang Chen, Kang Li, Jingting Li, Yong Bao, Cheng Wang, Demeng Chen. Sox9+ cells are required for salivary gland regeneration after radiation damage via the Wnt/β-catenin pathway[J]. Journal of Genetics and Genomics, 2022, 49(3): 230-239. doi: 10.1016/j.jgg.2021.09.008
    [5]Jianzhi Zhao, Xiaojie Wang, Xinan Meng, Wei Zou, Suhong Xu. Rapid and efficient wounding for in vivo studies of neuronal dendrite regeneration and degeneration[J]. Journal of Genetics and Genomics, 2021, 48(2): 163-166. doi: 10.1016/j.jgg.2020.10.003
    [6]Siting Lai, Ankita Kumari, Jixiang Liu, Yiyue Zhang, Wenqing Zhang, Kuangyu Yen, Jin Xu. Chemical screening reveals Ronidazole is a superior prodrug to Metronidazole for nitroreductase-induced cell ablation system in zebrafish larvae[J]. Journal of Genetics and Genomics, 2021, 48(12): 1081-1090. doi: 10.1016/j.jgg.2021.07.015
    [7]Meijun Pang, Connie Xiong, Chenglu Xiao, Jianyong Du, Lixia Zheng, Linlu Bai, Xiaojun Zhu, Jing-Wei Xiong. Critical role of zebrafish dnajb5 in myocardial proliferation and regeneration[J]. Journal of Genetics and Genomics, 2020, 47(8): 493-496. doi: 10.1016/j.jgg.2020.07.005
    [8]Jing Pan, Fei Zhao, Guifang Zhang, Yu Pan, Lijun Sun, Ning Bao, Peng Qin, Lyuqin Chen, Jie Yu, Yijing Zhang, Lin Xu. Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants[J]. Journal of Genetics and Genomics, 2019, 46(3): 133-140. doi: 10.1016/j.jgg.2019.03.001
    [9]Xiaochen Gai, Bufu Tang, Fangming Liu, Yuting Wu, Fang Wang, Yanling Jing, Fuqiang Huang, Di Jin, Ling Wang, Hongbing Zhang. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3β/MMPs[J]. Journal of Genetics and Genomics, 2019, 46(5): 235-245. doi: 10.1016/j.jgg.2019.03.013
    [10]Tao Tao, Jie Sun, Yajing Peng, Pei Wang, Xin Chen, Wei Zhao, Yeqiong Li, Lisha Wei, Wei Wang, Yanyan Zheng, Ye Wang, Xuena Zhang, Min-Sheng Zhu. Distinct functions of Trio GEF domains in axon outgrowth of cerebellar granule neurons[J]. Journal of Genetics and Genomics, 2019, 46(2): 87-96. doi: 10.1016/j.jgg.2019.02.003
    [11]Fangfang Tao, Xinxin Tian, Mengxi Lu, Zhiqian Zhang. A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c[J]. Journal of Genetics and Genomics, 2018, 45(3): 137-145. doi: 10.1016/j.jgg.2018.03.001
    [12]Zitong Zhao, Xinyi Fan, Lanfang Jiang, Zhongqiu Xu, Liyan Xue, Qimin Zhan, Yongmei Song. miR-503-3p promotes epithelial–mesenchymal transition in breast cancer by directly targeting SMAD2 and E-cadherin[J]. Journal of Genetics and Genomics, 2017, 44(2): 75-84. doi: 10.1016/j.jgg.2016.10.005
    [13]Changyan Chen, Shuai Yin, Wenze Cao, Margaret S. Ho. Drosophila ubiquitin E3 ligase dSmurf is required for synapse remodeling and axon pruning by glia[J]. Journal of Genetics and Genomics, 2017, 44(1): 67-70. doi: 10.1016/j.jgg.2016.10.007
    [14]Qiao Li, Hao Yang, Tao P. Zhong. Regeneration across Metazoan Phylogeny: Lessons from Model Organisms[J]. Journal of Genetics and Genomics, 2015, 42(2): 57-70. doi: 10.1016/j.jgg.2014.12.002
    [15]Yanfen Lu, Zhouhua Li. No Intestinal Stem Cell Regeneration after Complete Progenitor Ablation in Drosophila Adult Midgut[J]. Journal of Genetics and Genomics, 2015, 42(2): 83-86. doi: 10.1016/j.jgg.2014.10.002
    [16]Xiuli Liu, Yuanqing Ma, Congwei Zhang, Shi Wei, Yu Cao, Qiang Wang. Nodal Promotes mir206 Expression to Control Convergence and Extension Movements During Zebrafish Gastrulation[J]. Journal of Genetics and Genomics, 2013, 40(10): 515-521. doi: 10.1016/j.jgg.2013.07.001
    [17]Yi-Song Zhen, Qing Wu, Cheng-Lu Xiao, Nan-Nan Chang, Xu Wang, Lei Lei, Xiaojun Zhu, Jing-Wei Xiong. Overlapping Cardiac Programs in Heart Development and Regeneration[J]. Journal of Genetics and Genomics, 2012, 39(9): 443-449. doi: 10.1016/j.jgg.2012.07.005
    [18]Changxin Ma, Yang Gao, Guoliang Chai, Hanxia Su, Niejun Wang, Yigang Yang, Chunbo Li, Di Miao, Wei Wu. Djrho2 is involved in regeneration of visual nerves in Dugesia japonica[J]. Journal of Genetics and Genomics, 2010, 37(11): 713-723. doi: 10.1016/S1673-8527(09)60089-8
    [19]Honglei Li, Xiaoguang Chen, Fuchun Zhang, Ji Ma, Cunshuan Xu. Expression Patterns of the Cell Junction-associated Genes During Rat Liver Regeneration[J]. Journal of Genetics and Genomics, 2007, 34(10): 892-908. doi: 10.1016/S1673-8527(07)60101-5
    [20]Yu Wang, Shaohong Fu, Ying Wen, Zhiming Zhang, Yanli Xia, Yuzhen Liu, Tingzhao Rong, Guangtang Pan. Selection of Maize Inbred Lines with High Regeneration and Susceptibility to Agrobacterium tumifacien[J]. Journal of Genetics and Genomics, 2007, 34(8): 749-755. doi: 10.1016/S1673-8527(07)60084-8
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.4 %FULLTEXT: 29.4 %META: 64.7 %META: 64.7 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionReserved: 5.9 %Reserved: 5.9 %United States: 70.6 %United States: 70.6 %北京: 23.5 %北京: 23.5 %ReservedUnited States北京

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads (1) Cited by (1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return