Abel, S., Oeller, P.W., Theologis, A., 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U. S. A. 91, 326-330.
|
Adamowski, M., Li, L., Friml, J., 2019. Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int. J. Mol. Sci. 20, 3337.
|
Bailly, A., Sovero, V., Vincenzetti, V., Santelia, D., Bartnik, D., Koenig, B.W., Mancuso, S., Martinoia, E., Geisler, M., 2008. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J. Biol. Chem. 283, 21817-21826.
|
Barbez, E., Dunser, K., Gaidora, A., Lendl, T., Busch, W., 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 114, 4884-4893.
|
Bargmann, B.O., Vanneste, S., Krouk, G., Nawy, T., Efroni, I., Shani, E., Choe, G., Friml, J., Bergmann, D.C., Estelle, M., et al., 2013. A map of cell type-specific auxin responses. Mol. Syst. Biol. 9, 688.
|
Bates, G.W., Goldsmith, M.H., 1983. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159, 231-237.
|
Bennett, T., Hines, G., Leyser, O., 2014. Canalization: what the flux? Trends Genet. 30, 41-48.
|
Bhalerao, R.P., Bennett, M.J., 2003. The case for morphogens in plants. Nat. Cell Biol. 5, 939-943.
|
Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrotrechenmann, C., Fleming, A.J., 2008. Conditional repression of auxin binding protein 1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20, 2746-2762.
|
Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., Zheng, W., Wang, X., Gu, Y., Gelova, Z., et al., 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240-243.
|
Chang, C., Schaller, G.E., Patterson, S.E., Kwok, S.F., Meyerowitz, E.M., Bleecker, A.B., 1992. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell 4, 1263-1271.
|
Chapman, E.J., Estelle, M., 2009. Mechanism of auxin-regulated gene expression in Plants. Annu. Rev. Genet. 43, 265-285.
|
Chen, X., Grandont, L., Li, H., Hauschild, R., Paque, S., Abuzeineh, A., Rakusova, H., Benkova, E., Perrot-Rechenmann, C., Friml, J., 2014. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516, 90-93.
|
Chen, H., Li, L., Zou, M., Qi, L., Friml, J., 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signaling. Mol. Plant 16, 1117-1119.
|
Cleland, R.E., Prins, H.B., Harper, J.R., Higinbotham, N., 1977. Rapid hormone-induced hyperpolarization of the oat coleoptile transmembrane potential. Plant Physiol. 59, 395-397.
|
Cui, X., Wang, J., Li, K., Lv, B., Hou, B., Ding, Z., 2024. Protein post-translational modifications in auxin signaling. J. Genet. Genomics 51, 279-291.
|
da Costa, C.T., Pedebos, C., Verli, H., Fett-Neto, A.G., 2017. The role of Zn2+, dimerization and N-glycosylation in the interaction of auxin-binding protein 1 (ABP1) with different auxins. Glycobiology 27, 1109-1119.
|
Dahlke, R.I., Fraas, S., Ullrich, K.K., Heinemann, K., Romeiks, M., Rickmeyer, T., Klebe, G., Palme, K., Luthen, H., Steffens, B., 2017. Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways. Plant Physiol. 175, 982-994.
|
Dai, N., Wang, W., Patterson, S.E., Bleecker, A.B., 2013. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990.
|
del Pozo, J.C., Boniotti, M.B., Gutierrez, C., 2002. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell 14, 3057-3071.
|
del Pozo, J.C., Diaz-Trivino, S., Cisneros, N., Gutierrez, C., 2006. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18, 2224-2235.
|
Dharmasiri, N., Dharmasiri, S., Estelle, M., 2005. The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
|
Dubey, S.M., Han, S., Stutzman, N., Prigge, M.J., Medvecka, E., Platre, M.P., Busch, W., Fendrych, M., Estelle, M., 2023. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol. Plant 16, 1120-1130.
|
Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova, S., Celenza, J., Benkova, E., 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. U. S. A. 105, 8790-8794.
|
Fendrych, M., Leung, J., Friml, J., 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048.
|
Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Uchida, N., Torii, K.U., Friml, J., 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453-459.
|
Feng, M., Kim, J.Y., 2015. Revisiting apoplastic auxin signaling mediated by auxin binding protein 1. Mol. Cells 38, 829-835.
|
Fiedler, L., Friml, J., 2023. Rapid auxin signaling: unknowns old and new. Curr. Opin. Plant Biol. 75, 102443.
|
Franco-Zorrilla, J.M., Lopez-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., Solano, R., 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. U. S. A. 111, 2367-2372.
|
Friml, J., Gallei, M., Gelova, Z., Johnson, A., Mazur, E., Monzer, A., Rodriguez, L., Roosjen, M., Verstraeten, I., Zivanovic, B.D., et al., 2022. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 609, 575-581.
|
Gallei, M., Luschnig, C., Friml, J., 2020. Auxin signalling in growth: Schrodinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43-49.
|
Gao, Y., Zhang, Y., Zhang, D., Dai, X., Estelle, M., Zhao, Y., 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. U. S. A. 112, 2275-2280.
|
Gelova, Z., Gallei, M., Pernisova, M., Brunoud, G., Zhang, X., Glanc, M., Li, L., Michalko, J., Pavlovicova, Z., Verstraeten, I., et al., 2021. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci. 303, 110750.
|
Goring, H., Polevoy, V.V., Stahlberg, R., Stumpe, G., 1979. Depolarization of transmembrane potential of corn and wheat coleoptiles under reduced water potential and after IAA application. Plant Cell Physiol. 20, 649-656.
|
Gu, B., Dong, H., Smith, C., Cui, G., Li. Y, Bevan, M.W., 2022. Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 119, e2205757119.
|
Guilfoyle, T.J., 2015. The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell 27, 33-43.
|
Hager, A., Menzel, H., Krauss, A., 1971. Experiments and hypothesis concerning the primary action of auxin in elongation growth. Planta 100, 47-75.
|
Hajny, J., Prat, T., Rydza, N., Rodriguez, L., Tan, S., Verstraeten, I., Domjan, D., Mazur, E., Smakowska-Luzan, E., Smet, W., et al., 2020. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370, 550-557.
|
Hajny, J., Tan, S., Friml, J., 2022. Auxin canalization: From speculative models toward molecular players. Curr. Opin. Plant Biol. 65, 102174.
|
Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M., 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899-1911.
|
Henderson, J., Bauly, J.M., Ashford, D.A., Oliver, S.C., Hawes, C.R., Lazarus, C.M., Venis, M.A., Napier, R.M., 1997. Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202, 313-323.
|
Hertel, R., Thomson, K.S., Russo, V.E.A., 1972. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325-340.
|
Hocq, L., Pelloux, J., Lefebvre, V., 2017. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci. 22(1), 20-29.
|
Huang, R., Zheng, R., He, J., Zhou, Z., Wang, J., Xiong, Y., Xu, T., 2019. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. U. S. A. 116, 21285-21290.
|
Jia, W., Li, B., Li, S., Liang, Y., Wu, X., Ma, M., Wang, J., Gao, J., Cai, Y., Zhang, Y., et al., 2016. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 14, e1002550.
|
Jing, H., Yang, X., Emenecker, R.J., Feng, J., Zhang, J., Figueiredo, M.R.A., Chaisupa, P., Wright, R.C., Holehouse, A.S., Strader, L.C., et al., 2023. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J. Genet. Genomics 50, 473-485.
|
Jurado, S., Diaz-Trivino, S., Abraham, Z., Manzano, C., Gutierrez, C., del Pozo, C., 2008. SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant J. 53, 828-841.
|
Jurado, S., Abraham, Z., Manzano, C., Lopez-Torrejon, G., Pacios, L.F., Del Pozo, J.C., 2010. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22, 3891-3904.
|
Kamura, T., Hara, T., Kotoshiba, S., Yada, M., Ishida, N., Imaki, H., Hatakeyama, S., Nakayama, K., Nakayama, K.I., 2003. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 100, 10231-10236.
|
Kepinski, S., Leyser, O., 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
|
Kim, Y.S., Kim, D., Jung, J., 1998. Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. FEBS Lett. 438, 241-244.
|
Kim, S.H., Bahk, S., Nguyen, N.T., Pham, M.L.A., Kadam, U.S., Hong, J.C., Chung, W.S., 2022. Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis. Nucleic Acids Res. 50, 10544-10561.
|
Kovtun, Y., Chiu, W.L., Zeng, W., Sheen, J., 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716-720.
|
Kubes, M., Napier, R., 2019. Non-canonical auxin signalling: fast and curious. J. Exp. Bot. 70, 2609-2614.
|
Kuhn, A., Weijers, D., 2024. Distant cousins come to ABP1's rescue. Sci. China Life Sci. 67, 219-220.
|
Kuhn, A., Ramans Harborough, S., McLaughlin, H.M., Natarajan, B., Verstraeten, I., Friml, J., Kepinski, S., OEstergaard, L., 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787.
|
Kuhn, A., Roosjen, M., Mutte, S., Dubey, S.M., Carrillo Carrasco, V.P., Boeren, S., Monzer, A., Koehorst, J., Kohchi, T., Nishihama, R., et al., 2024. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 187, 130-148.
|
Leyser, O., 2005. Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121, 819-822.
|
Leyser, O., 2018. Auxin signaling. Plant Physiol. 176, 465-479.
|
Li, X., Zhao, Q., Liao, R., Sun, P., Wu, X., 2003. The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854-30858.
|
Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez, L., Merrin, J., Chen, J., Shabala, L., Smet, W., Ren, H., et al., 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273-277.
|
Li, L., Gallei, M., Friml, J., 2022. Bending to auxin: fast acid growth for tropisms. Trends in Plant Sci. 27, 440-449.
|
Lin, W., Zhou, X., Tang, W., Takahashi, K., Pan, X., Dai, J., Ren, H., Zhu, X., Pan, S., Zheng, H., et al., 2021. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278-282.
|
Liu, J., Tian, H., Zhang, M., Sun, Y., Wang, J., Yu, Q., Ding, Z., 2024. STOP1 attenuates the auxin response to maintain root stem cell niche identity. Cell Rep. 43, 113617.
|
Lobler, M., Klambt, D., 1985. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. purification by immunological methods and characterization. J. Biol. Chem. 260, 9848-9853.
|
Lv, B., Yu, Q., Liu, J., Wen, X., Yan, Z., Hu, K., Li, H., Kong, X., Li, C., Tian, H., et al., 2020. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J. 39, e101515.
|
Lv, B., Wei, K., Hu, K., Tian, T., Zhang, F., Yu, Z., Zhang, D., Su, Y., Sang, Y., Zhang, X., et al., 2021. MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Mol. Plant 14, 285-297.
|
Marti, A., Wirbelauer, C., Scheffner, M., Krek, W., 1999. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat. Cell Biol. 1, 14-19.
|
Mazur, E., Kulik, I., Hajny, J., Friml, J., 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 1375-1383.
|
McQueen-Mason, S., Durachko, D.M., Cosgrove, D.J., 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4, 1425-1433.
|
Mockaitis, K., Howell, S.H., 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24, 785-796.
|
Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H., Gilroy, S., 2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21, 2341-2356.
|
Monshausen, G.B., Miller, N.D., Murphy, A.S., Gilroy, S., 2011. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309-318.
|
Murphy, A.S., Jones, A.M., 2023. Found: the missing discriminators of cell-surface auxin receptors. Cell 186, 5438-5439.
|
Mutte, S.K., Kato, H., Rothfels, C., Melkonian, M., Wong, G.K.-S., Weijers, D., 2018. Origin and evolution of the nuclear auxin response system. Elife 7, e33399.
|
Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V., Hirt, H., 2006. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 281, 38697-38704.
|
Nakayama, K., Nagahama, H., Minamishima, Y.A., Matsumoto, M., Nakamichi, I., Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., et al., 2000. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069-2081.
|
Napier, R., 2021. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol. 13, a039909.
|
Narasimhan, M., Gallei, M., Tan, S., Johnson, A., Verstraeten, I., Li, L., Rodriguez, L., Han, H., Himschoot, E., Wang, R., et al., 2021. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 186, 1122-1142.
|
Ohmiya, A., Tanaka, Y., Kadowaki, K., Hayashi, T., 1998. Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol. 39, 492-499.
|
Paponov, I.A., Dindas, J., Krol, E., Friz, T., Budnyk, V., Teale, W., Paponov, M., Hedrich, R., Palme, K., 2018. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by auxin binding protein 1. Front. Plant Sci. 9, 1953.
|
Parizkova, B., Pernisova, M., Novak, O., 2017. What has been seen cannot be unseen-detecting auxin in vivo. Int. J. Mol. Sci. 18, 2736.
|
Perrot-Rechenmann, C., 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446.
|
Philippar, K., Ivashikina, N., Ache, P., Christian, M., Luthen, H., Palme, K., Hedrich, R., 2004. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 37, 815-827.
|
Prat, T., Hajny, J., Grunewald, W., Vasileva, M., Molnar, G., Tejos, R., Schmid, M., Sauer, M., Friml, J., 2018. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 14, e1007177.
|
Qi, L., Kwiatkowski, M., Chen, H., Hoermayer, L., Sinclair, S., Zou, M., Del Genio, C.I., Kubes, M.F., Napier, R., Jaworski, K., et al., 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611, 133-138.
|
Qi, L., Kwiatkowski, M., Kulich, I., Chen, H., Gao, Y., Yun, P., Li, L., Shabala, S., Farmer, E., Jaworski, K., et al., 2023. Guanylate cyclase activity of TIR1/AFB auxin receptors in rapid auxin responses. bioRxiv, https://doi.org/10.1101/2023.11.18.567481.
|
Rakusova, H., Gallego-Bartolome, J., Vanstraelen, M., Robert, H.S., Alabadi, D., Blazquez, M.A., Benkova, E., Friml, J., 2011. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J. 67, 817-826.
|
Rakusova, H., Abbas, M., Han, H., Song, S., Robert, H.S., Friml, J., 2016. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 26, 3026-3032.
|
Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C., 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260.
|
Ren, H., Santner, A., del Pozo, J.C., Murray, J.A., Estelle, M., 2008. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J. 53, 705-716.
|
Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Covanova, M., et al., 2010. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111-121.
|
Rodriguez, L., Fiedler, L., Zou, M., Giannini, C., Monzer, A., Gelova, Z., Verstraeten, I., Hajny, J., Tan, S., Hoermayer, L., et al., 2022. Cell surface auxin signalling directly targets PIN-mediated auxin fluxes for adaptive plant development. bioRxiv, https://doi.org/10.1101/2022.11.30.518503.
|
Sachs, T., 1968. The role of the root in the induction of xylem differentiation in peas. Ann. Bot. 32, 391-399.
|
Sachs, T., 1981. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. Inc. Adv. Plant Pathol. 9, 151-262.
|
Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., Benkova, E., 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902-2911.
|
Serre, N.B.C., Kralik, D., Yun, P., Slouka, Z., Shabala, S., Fendrych, M., 2021. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229-1238.
|
Sheen, J., 2024. The new horizon of plant auxin signaling via cell-surface co-receptors. Cell Res. 34, 343-344.
|
Shih, H.-W., DePew, Cody L., Miller, Nathan D., Monshausen, Gabriele B., 2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol. 25, 3119-3125.
|
Shimomura, S., Watanabe, S., Ichikawa, H., 1999. Characterization of auxin-binding protein 1 from tobacco: content, localization and auxin-binding activity. Planta 209, 118-125.
|
Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire-Rios, A., Sorefan, K., Weijers, D., Friml, J., OEstergaard, L., 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev. 30, 2286-2296.
|
Simonini, S., Bencivenga, S., Trick, M., OEstergaard, L., 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell 29, 1864-1882.
|
Spartz, A.K., Ren, H., Park, M.Y., Grandt, K.N., Lee, S.H., Murphy, A.S., Sussman, M.R., Overvoorde, P.J., Gray, W.M., 2014. SAUR Inhibition of PP2C.D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129-2142.
|
Takahashi, K., Hayashi, K., Kinoshita, T., 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 159, 632-641.
|
Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N., 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
|
Taniguchi, M., Furutani, M., Nishimura, T., Nakamura, M., Fushita, T., Iijima, K., Baba, K., Tanaka, H., Toyota, M., Tasaka, M., et al., 2017. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29, 1984-1999.
|
Teale, W.D., Paponov, I.A., Palme, K., 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847-859.
|
Tedesco, D., Lukas, J., Reed, S.I., 2002. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 16, 2946-2957.
|
Tena, G., 2023. ABP1's new partners. Nat. Plants 9, 1941.
|
Tena, G., Boudsocq, M., Sheen, J., 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519-529.
|
Tromas, A., Paponov, I., Perrot-Rechenmann, C., 2010. Auxin binding protein 1: functional and evolutionary aspects. Trends Plant Sci. 15, 436-446.
|
Tsvetkov, L.M., Yeh, K.H., Lee, S.J., Sun, H., Zhang, H., 1999. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661-664.
|
Vieten, A., Vanneste, S., Wisniewska, J., Benkova, E., Benjamins, R., Beeckman, T., Luschnig, C., Friml, J., 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521-4531.
|
Wang, Q., Qin, G., Cao, M., Chen, R., He, Y., Yang, L., Zeng, Z., Yu, Y., Gu, Y., Xing, W., et al., 2020. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11, 679.
|
Wang, J., Chang, M., Huang, R., Gallei, M., Friml, J., Yu, Y., Wen, M., Yang, Z., Xu, T., 2022. Self-regulation of PIN1-driven auxin transport by cell surface-based auxin signaling in Arabidopsis. bioRxiv, https://doi.org/10.1101/2022.11.30.518523.
|
Wang, J., Li, X., Chen, X., Tang, W., Yu, Z., Xu, T., Tian, H., Ding, Z., 2023. Dual regulations of cell cycle regulator DPa by auxin in Arabidopsis root distal stem cell maintenance. Proc. Natl. Acad. Sci. U. S. A. 120, e2218503120.
|
Wei, N., Wang, J., Jin, D., Deng, Z., Song, Z., Zheng, L., Zeng, H., Kinoshita, T., Liao, Z., Chen, H., et al., 2023. Apoplastic pH determines the hypocotyl response to auxin dosage and light. bioRxiv, https://doi.org/10.21203/rs.3.rs-3625192/v1.
|
Weijers, D., Wagner, D., 2016. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539-574.
|
Woo, E.J., Marshall, J., Bauly, J., Chen, J.G., Venis, M., Napier, R.M., Pickersgill, R.W., 2002. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21, 2877-2885.
|
Xia, L., Mar Marques-Bueno, M., Bruce, C.G., Karnik, R., 2019. Unusual roles of secretory snare SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth. Plant Physiol. 180, 837-858.
|
Xu, J., Zhang, S., 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 20, 56-64.
|
Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.G., Wu, M.J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., Yang, Z., 2010. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
|
Xu, T., Dai, N., Chen, J., Nagawa, S., Cao, M., Li, H., Zhou, Z., Chen, X., De Rycke, R., Rakusova, H., et al., 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025-1028.
|
Yang, J., He, H., He, Y., Zheng, Q., Li, Q., Feng, X., Wang, P., Qin, G., Gu, Y., Wu, P., et al., 2021. TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2102544118.
|
Yin, K., Han, X., Xu, Z., Xue, H., 2009. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro. Acta Biochim. Biophys. Sin. 41, 478-487.
|
Yu, Y., Tang, W., Lin, W., Li, W., Zhou, X., Li, Y., Chen, R., Zheng, R., Qin, G., Cao, W., et al., 2023. ABLs and TMKs are co-receptors for extracellular auxin. Cell 186, 5457-5471.
|
Yu, Z., Ma, J., Zhang, M., Li, X., Sun, Y., Zhang, M., Ding, Z., 2023. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. Sci. Adv. 9, eade2493.
|
Yu, Z., Zhang, F., Friml, J., Ding, Z., 2022. Auxin signaling: research advances over the past 30 years. J. Integr. Plant Biol. 64, 371-392.
|
Zhang, W.J., Zhou, Y., Zhang, Y., Su, Y.H., Xu, T., 2023. Protein phosphorylation: a molecular switch in plant signaling. Cell Rep. 42, 112729.
|
Zhou, Y., Wang, C., Yu, Y., Ding, Z., Xu, T., 2024. Rapid auxin signaling: an ancient and conserved response in plants. Innovation Life 2, 100061.
|