9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

The interplay between extracellular and intracellular auxin signaling in plants

doi: 10.1016/j.jgg.2024.06.019
Funds:

This work was supported by the National Natural Science Foundation of China (32130010). Fig. 1 (license number: PW26XD84OQ) and Fig. 4 (license number: WI26XD8W06) were created with BioRender.com.

  • Received Date: 2024-05-12
  • Accepted Date: 2024-06-26
  • Rev Recd Date: 2024-06-19
  • Available Online: 2025-07-11
  • Publish Date: 2024-07-03
  • The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular and intracellular auxin, which contributes to the intricate role of auxin in plant development.
  • loading
  • Abel, S., Oeller, P.W., Theologis, A., 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. U. S. A. 91, 326-330.
    Adamowski, M., Li, L., Friml, J., 2019. Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int. J. Mol. Sci. 20, 3337.
    Bailly, A., Sovero, V., Vincenzetti, V., Santelia, D., Bartnik, D., Koenig, B.W., Mancuso, S., Martinoia, E., Geisler, M., 2008. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J. Biol. Chem. 283, 21817-21826.
    Barbez, E., Dunser, K., Gaidora, A., Lendl, T., Busch, W., 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 114, 4884-4893.
    Bargmann, B.O., Vanneste, S., Krouk, G., Nawy, T., Efroni, I., Shani, E., Choe, G., Friml, J., Bergmann, D.C., Estelle, M., et al., 2013. A map of cell type-specific auxin responses. Mol. Syst. Biol. 9, 688.
    Bates, G.W., Goldsmith, M.H., 1983. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159, 231-237.
    Bennett, T., Hines, G., Leyser, O., 2014. Canalization: what the flux? Trends Genet. 30, 41-48.
    Bhalerao, R.P., Bennett, M.J., 2003. The case for morphogens in plants. Nat. Cell Biol. 5, 939-943.
    Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrotrechenmann, C., Fleming, A.J., 2008. Conditional repression of auxin binding protein 1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20, 2746-2762.
    Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., Zheng, W., Wang, X., Gu, Y., Gelova, Z., et al., 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240-243.
    Chang, C., Schaller, G.E., Patterson, S.E., Kwok, S.F., Meyerowitz, E.M., Bleecker, A.B., 1992. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell 4, 1263-1271.
    Chapman, E.J., Estelle, M., 2009. Mechanism of auxin-regulated gene expression in Plants. Annu. Rev. Genet. 43, 265-285.
    Chen, X., Grandont, L., Li, H., Hauschild, R., Paque, S., Abuzeineh, A., Rakusova, H., Benkova, E., Perrot-Rechenmann, C., Friml, J., 2014. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516, 90-93.
    Chen, H., Li, L., Zou, M., Qi, L., Friml, J., 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signaling. Mol. Plant 16, 1117-1119.
    Cleland, R.E., Prins, H.B., Harper, J.R., Higinbotham, N., 1977. Rapid hormone-induced hyperpolarization of the oat coleoptile transmembrane potential. Plant Physiol. 59, 395-397.
    Cui, X., Wang, J., Li, K., Lv, B., Hou, B., Ding, Z., 2024. Protein post-translational modifications in auxin signaling. J. Genet. Genomics 51, 279-291.
    da Costa, C.T., Pedebos, C., Verli, H., Fett-Neto, A.G., 2017. The role of Zn2+, dimerization and N-glycosylation in the interaction of auxin-binding protein 1 (ABP1) with different auxins. Glycobiology 27, 1109-1119.
    Dahlke, R.I., Fraas, S., Ullrich, K.K., Heinemann, K., Romeiks, M., Rickmeyer, T., Klebe, G., Palme, K., Luthen, H., Steffens, B., 2017. Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways. Plant Physiol. 175, 982-994.
    Dai, N., Wang, W., Patterson, S.E., Bleecker, A.B., 2013. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990.
    del Pozo, J.C., Boniotti, M.B., Gutierrez, C., 2002. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell 14, 3057-3071.
    del Pozo, J.C., Diaz-Trivino, S., Cisneros, N., Gutierrez, C., 2006. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18, 2224-2235.
    Dharmasiri, N., Dharmasiri, S., Estelle, M., 2005. The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
    Dubey, S.M., Han, S., Stutzman, N., Prigge, M.J., Medvecka, E., Platre, M.P., Busch, W., Fendrych, M., Estelle, M., 2023. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Mol. Plant 16, 1120-1130.
    Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova, S., Celenza, J., Benkova, E., 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. U. S. A. 105, 8790-8794.
    Fendrych, M., Leung, J., Friml, J., 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048.
    Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Uchida, N., Torii, K.U., Friml, J., 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453-459.
    Feng, M., Kim, J.Y., 2015. Revisiting apoplastic auxin signaling mediated by auxin binding protein 1. Mol. Cells 38, 829-835.
    Fiedler, L., Friml, J., 2023. Rapid auxin signaling: unknowns old and new. Curr. Opin. Plant Biol. 75, 102443.
    Franco-Zorrilla, J.M., Lopez-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., Solano, R., 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. U. S. A. 111, 2367-2372.
    Friml, J., Gallei, M., Gelova, Z., Johnson, A., Mazur, E., Monzer, A., Rodriguez, L., Roosjen, M., Verstraeten, I., Zivanovic, B.D., et al., 2022. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 609, 575-581.
    Gallei, M., Luschnig, C., Friml, J., 2020. Auxin signalling in growth: Schrodinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43-49.
    Gao, Y., Zhang, Y., Zhang, D., Dai, X., Estelle, M., Zhao, Y., 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl. Acad. Sci. U. S. A. 112, 2275-2280.
    Gelova, Z., Gallei, M., Pernisova, M., Brunoud, G., Zhang, X., Glanc, M., Li, L., Michalko, J., Pavlovicova, Z., Verstraeten, I., et al., 2021. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci. 303, 110750.
    Goring, H., Polevoy, V.V., Stahlberg, R., Stumpe, G., 1979. Depolarization of transmembrane potential of corn and wheat coleoptiles under reduced water potential and after IAA application. Plant Cell Physiol. 20, 649-656.
    Gu, B., Dong, H., Smith, C., Cui, G., Li. Y, Bevan, M.W., 2022. Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 119, e2205757119.
    Guilfoyle, T.J., 2015. The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell 27, 33-43.
    Hager, A., Menzel, H., Krauss, A., 1971. Experiments and hypothesis concerning the primary action of auxin in elongation growth. Planta 100, 47-75.
    Hajny, J., Prat, T., Rydza, N., Rodriguez, L., Tan, S., Verstraeten, I., Domjan, D., Mazur, E., Smakowska-Luzan, E., Smet, W., et al., 2020. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370, 550-557.
    Hajny, J., Tan, S., Friml, J., 2022. Auxin canalization: From speculative models toward molecular players. Curr. Opin. Plant Biol. 65, 102174.
    Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M., 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899-1911.
    Henderson, J., Bauly, J.M., Ashford, D.A., Oliver, S.C., Hawes, C.R., Lazarus, C.M., Venis, M.A., Napier, R.M., 1997. Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202, 313-323.
    Hertel, R., Thomson, K.S., Russo, V.E.A., 1972. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325-340.
    Hocq, L., Pelloux, J., Lefebvre, V., 2017. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci. 22(1), 20-29.
    Huang, R., Zheng, R., He, J., Zhou, Z., Wang, J., Xiong, Y., Xu, T., 2019. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. U. S. A. 116, 21285-21290.
    Jia, W., Li, B., Li, S., Liang, Y., Wu, X., Ma, M., Wang, J., Gao, J., Cai, Y., Zhang, Y., et al., 2016. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 14, e1002550.
    Jing, H., Yang, X., Emenecker, R.J., Feng, J., Zhang, J., Figueiredo, M.R.A., Chaisupa, P., Wright, R.C., Holehouse, A.S., Strader, L.C., et al., 2023. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J. Genet. Genomics 50, 473-485.
    Jurado, S., Diaz-Trivino, S., Abraham, Z., Manzano, C., Gutierrez, C., del Pozo, C., 2008. SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant J. 53, 828-841.
    Jurado, S., Abraham, Z., Manzano, C., Lopez-Torrejon, G., Pacios, L.F., Del Pozo, J.C., 2010. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22, 3891-3904.
    Kamura, T., Hara, T., Kotoshiba, S., Yada, M., Ishida, N., Imaki, H., Hatakeyama, S., Nakayama, K., Nakayama, K.I., 2003. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 100, 10231-10236.
    Kepinski, S., Leyser, O., 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
    Kim, Y.S., Kim, D., Jung, J., 1998. Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. FEBS Lett. 438, 241-244.
    Kim, S.H., Bahk, S., Nguyen, N.T., Pham, M.L.A., Kadam, U.S., Hong, J.C., Chung, W.S., 2022. Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis. Nucleic Acids Res. 50, 10544-10561.
    Kovtun, Y., Chiu, W.L., Zeng, W., Sheen, J., 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716-720.
    Kubes, M., Napier, R., 2019. Non-canonical auxin signalling: fast and curious. J. Exp. Bot. 70, 2609-2614.
    Kuhn, A., Weijers, D., 2024. Distant cousins come to ABP1's rescue. Sci. China Life Sci. 67, 219-220.
    Kuhn, A., Ramans Harborough, S., McLaughlin, H.M., Natarajan, B., Verstraeten, I., Friml, J., Kepinski, S., OEstergaard, L., 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787.
    Kuhn, A., Roosjen, M., Mutte, S., Dubey, S.M., Carrillo Carrasco, V.P., Boeren, S., Monzer, A., Koehorst, J., Kohchi, T., Nishihama, R., et al., 2024. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 187, 130-148.
    Leyser, O., 2005. Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121, 819-822.
    Leyser, O., 2018. Auxin signaling. Plant Physiol. 176, 465-479.
    Li, X., Zhao, Q., Liao, R., Sun, P., Wu, X., 2003. The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854-30858.
    Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez, L., Merrin, J., Chen, J., Shabala, L., Smet, W., Ren, H., et al., 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273-277.
    Li, L., Gallei, M., Friml, J., 2022. Bending to auxin: fast acid growth for tropisms. Trends in Plant Sci. 27, 440-449.
    Lin, W., Zhou, X., Tang, W., Takahashi, K., Pan, X., Dai, J., Ren, H., Zhu, X., Pan, S., Zheng, H., et al., 2021. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278-282.
    Liu, J., Tian, H., Zhang, M., Sun, Y., Wang, J., Yu, Q., Ding, Z., 2024. STOP1 attenuates the auxin response to maintain root stem cell niche identity. Cell Rep. 43, 113617.
    Lobler, M., Klambt, D., 1985. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. purification by immunological methods and characterization. J. Biol. Chem. 260, 9848-9853.
    Lv, B., Yu, Q., Liu, J., Wen, X., Yan, Z., Hu, K., Li, H., Kong, X., Li, C., Tian, H., et al., 2020. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J. 39, e101515.
    Lv, B., Wei, K., Hu, K., Tian, T., Zhang, F., Yu, Z., Zhang, D., Su, Y., Sang, Y., Zhang, X., et al., 2021. MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Mol. Plant 14, 285-297.
    Marti, A., Wirbelauer, C., Scheffner, M., Krek, W., 1999. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat. Cell Biol. 1, 14-19.
    Mazur, E., Kulik, I., Hajny, J., Friml, J., 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 1375-1383.
    McQueen-Mason, S., Durachko, D.M., Cosgrove, D.J., 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4, 1425-1433.
    Mockaitis, K., Howell, S.H., 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24, 785-796.
    Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H., Gilroy, S., 2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21, 2341-2356.
    Monshausen, G.B., Miller, N.D., Murphy, A.S., Gilroy, S., 2011. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309-318.
    Murphy, A.S., Jones, A.M., 2023. Found: the missing discriminators of cell-surface auxin receptors. Cell 186, 5438-5439.
    Mutte, S.K., Kato, H., Rothfels, C., Melkonian, M., Wong, G.K.-S., Weijers, D., 2018. Origin and evolution of the nuclear auxin response system. Elife 7, e33399.
    Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V., Hirt, H., 2006. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 281, 38697-38704.
    Nakayama, K., Nagahama, H., Minamishima, Y.A., Matsumoto, M., Nakamichi, I., Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., et al., 2000. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069-2081.
    Napier, R., 2021. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol. 13, a039909.
    Narasimhan, M., Gallei, M., Tan, S., Johnson, A., Verstraeten, I., Li, L., Rodriguez, L., Han, H., Himschoot, E., Wang, R., et al., 2021. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 186, 1122-1142.
    Ohmiya, A., Tanaka, Y., Kadowaki, K., Hayashi, T., 1998. Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol. 39, 492-499.
    Paponov, I.A., Dindas, J., Krol, E., Friz, T., Budnyk, V., Teale, W., Paponov, M., Hedrich, R., Palme, K., 2018. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by auxin binding protein 1. Front. Plant Sci. 9, 1953.
    Parizkova, B., Pernisova, M., Novak, O., 2017. What has been seen cannot be unseen-detecting auxin in vivo. Int. J. Mol. Sci. 18, 2736.
    Perrot-Rechenmann, C., 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446.
    Philippar, K., Ivashikina, N., Ache, P., Christian, M., Luthen, H., Palme, K., Hedrich, R., 2004. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 37, 815-827.
    Prat, T., Hajny, J., Grunewald, W., Vasileva, M., Molnar, G., Tejos, R., Schmid, M., Sauer, M., Friml, J., 2018. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 14, e1007177.
    Qi, L., Kwiatkowski, M., Chen, H., Hoermayer, L., Sinclair, S., Zou, M., Del Genio, C.I., Kubes, M.F., Napier, R., Jaworski, K., et al., 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611, 133-138.
    Qi, L., Kwiatkowski, M., Kulich, I., Chen, H., Gao, Y., Yun, P., Li, L., Shabala, S., Farmer, E., Jaworski, K., et al., 2023. Guanylate cyclase activity of TIR1/AFB auxin receptors in rapid auxin responses. bioRxiv, https://doi.org/10.1101/2023.11.18.567481.
    Rakusova, H., Gallego-Bartolome, J., Vanstraelen, M., Robert, H.S., Alabadi, D., Blazquez, M.A., Benkova, E., Friml, J., 2011. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J. 67, 817-826.
    Rakusova, H., Abbas, M., Han, H., Song, S., Robert, H.S., Friml, J., 2016. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 26, 3026-3032.
    Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C., 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260.
    Ren, H., Santner, A., del Pozo, J.C., Murray, J.A., Estelle, M., 2008. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J. 53, 705-716.
    Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Covanova, M., et al., 2010. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111-121.
    Rodriguez, L., Fiedler, L., Zou, M., Giannini, C., Monzer, A., Gelova, Z., Verstraeten, I., Hajny, J., Tan, S., Hoermayer, L., et al., 2022. Cell surface auxin signalling directly targets PIN-mediated auxin fluxes for adaptive plant development. bioRxiv, https://doi.org/10.1101/2022.11.30.518503.
    Sachs, T., 1968. The role of the root in the induction of xylem differentiation in peas. Ann. Bot. 32, 391-399.
    Sachs, T., 1981. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. Inc. Adv. Plant Pathol. 9, 151-262.
    Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., Benkova, E., 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902-2911.
    Serre, N.B.C., Kralik, D., Yun, P., Slouka, Z., Shabala, S., Fendrych, M., 2021. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229-1238.
    Sheen, J., 2024. The new horizon of plant auxin signaling via cell-surface co-receptors. Cell Res. 34, 343-344.
    Shih, H.-W., DePew, Cody L., Miller, Nathan D., Monshausen, Gabriele B., 2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol. 25, 3119-3125.
    Shimomura, S., Watanabe, S., Ichikawa, H., 1999. Characterization of auxin-binding protein 1 from tobacco: content, localization and auxin-binding activity. Planta 209, 118-125.
    Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire-Rios, A., Sorefan, K., Weijers, D., Friml, J., OEstergaard, L., 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev. 30, 2286-2296.
    Simonini, S., Bencivenga, S., Trick, M., OEstergaard, L., 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell 29, 1864-1882.
    Spartz, A.K., Ren, H., Park, M.Y., Grandt, K.N., Lee, S.H., Murphy, A.S., Sussman, M.R., Overvoorde, P.J., Gray, W.M., 2014. SAUR Inhibition of PP2C.D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129-2142.
    Takahashi, K., Hayashi, K., Kinoshita, T., 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 159, 632-641.
    Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N., 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
    Taniguchi, M., Furutani, M., Nishimura, T., Nakamura, M., Fushita, T., Iijima, K., Baba, K., Tanaka, H., Toyota, M., Tasaka, M., et al., 2017. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29, 1984-1999.
    Teale, W.D., Paponov, I.A., Palme, K., 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847-859.
    Tedesco, D., Lukas, J., Reed, S.I., 2002. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 16, 2946-2957.
    Tena, G., 2023. ABP1's new partners. Nat. Plants 9, 1941.
    Tena, G., Boudsocq, M., Sheen, J., 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519-529.
    Tromas, A., Paponov, I., Perrot-Rechenmann, C., 2010. Auxin binding protein 1: functional and evolutionary aspects. Trends Plant Sci. 15, 436-446.
    Tsvetkov, L.M., Yeh, K.H., Lee, S.J., Sun, H., Zhang, H., 1999. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661-664.
    Vieten, A., Vanneste, S., Wisniewska, J., Benkova, E., Benjamins, R., Beeckman, T., Luschnig, C., Friml, J., 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521-4531.
    Wang, Q., Qin, G., Cao, M., Chen, R., He, Y., Yang, L., Zeng, Z., Yu, Y., Gu, Y., Xing, W., et al., 2020. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11, 679.
    Wang, J., Chang, M., Huang, R., Gallei, M., Friml, J., Yu, Y., Wen, M., Yang, Z., Xu, T., 2022. Self-regulation of PIN1-driven auxin transport by cell surface-based auxin signaling in Arabidopsis. bioRxiv, https://doi.org/10.1101/2022.11.30.518523.
    Wang, J., Li, X., Chen, X., Tang, W., Yu, Z., Xu, T., Tian, H., Ding, Z., 2023. Dual regulations of cell cycle regulator DPa by auxin in Arabidopsis root distal stem cell maintenance. Proc. Natl. Acad. Sci. U. S. A. 120, e2218503120.
    Wei, N., Wang, J., Jin, D., Deng, Z., Song, Z., Zheng, L., Zeng, H., Kinoshita, T., Liao, Z., Chen, H., et al., 2023. Apoplastic pH determines the hypocotyl response to auxin dosage and light. bioRxiv, https://doi.org/10.21203/rs.3.rs-3625192/v1.
    Weijers, D., Wagner, D., 2016. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539-574.
    Woo, E.J., Marshall, J., Bauly, J., Chen, J.G., Venis, M., Napier, R.M., Pickersgill, R.W., 2002. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21, 2877-2885.
    Xia, L., Mar Marques-Bueno, M., Bruce, C.G., Karnik, R., 2019. Unusual roles of secretory snare SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth. Plant Physiol. 180, 837-858.
    Xu, J., Zhang, S., 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 20, 56-64.
    Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.G., Wu, M.J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., Yang, Z., 2010. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
    Xu, T., Dai, N., Chen, J., Nagawa, S., Cao, M., Li, H., Zhou, Z., Chen, X., De Rycke, R., Rakusova, H., et al., 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025-1028.
    Yang, J., He, H., He, Y., Zheng, Q., Li, Q., Feng, X., Wang, P., Qin, G., Gu, Y., Wu, P., et al., 2021. TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2102544118.
    Yin, K., Han, X., Xu, Z., Xue, H., 2009. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro. Acta Biochim. Biophys. Sin. 41, 478-487.
    Yu, Y., Tang, W., Lin, W., Li, W., Zhou, X., Li, Y., Chen, R., Zheng, R., Qin, G., Cao, W., et al., 2023. ABLs and TMKs are co-receptors for extracellular auxin. Cell 186, 5457-5471.
    Yu, Z., Ma, J., Zhang, M., Li, X., Sun, Y., Zhang, M., Ding, Z., 2023. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. Sci. Adv. 9, eade2493.
    Yu, Z., Zhang, F., Friml, J., Ding, Z., 2022. Auxin signaling: research advances over the past 30 years. J. Integr. Plant Biol. 64, 371-392.
    Zhang, W.J., Zhou, Y., Zhang, Y., Su, Y.H., Xu, T., 2023. Protein phosphorylation: a molecular switch in plant signaling. Cell Rep. 42, 112729.
    Zhou, Y., Wang, C., Yu, Y., Ding, Z., Xu, T., 2024. Rapid auxin signaling: an ancient and conserved response in plants. Innovation Life 2, 100061.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return