8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Insights into left-right asymmetric development of chicken ovary at the single-cell level

doi: 10.1016/j.jgg.2024.08.002
Funds:

This work is funded by the Natural Science Foundation of Sichuan Province (2022NSFSC1767) and the National Natural Science Foundation of China (32360828).

  • Received Date: 2024-04-18
  • Accepted Date: 2024-08-02
  • Rev Recd Date: 2024-07-29
  • Available Online: 2025-06-06
  • Publish Date: 2024-08-13
  • Avian ovaries develop asymmetrically apart from prey birds, with only the left ovary growing more towards functional organ. Here, we analyze over 135,000 cells from chick's left and right ovaries at six distinct embryonic developmental stages utilizing single-cell transcriptome sequencing. We delineate gene expression patterns across 15 cell types within these embryo ovaries, revealing side-specific development. The left ovaries exhibit cortex cells, zygotene germ cells, and transcriptional changes unique to the left side. Differential gene expression analysis further identifies specific markers and pathways active in these cell types, highlighting the asymmetry in ovarian development. A fine-scale analysis of the germ cell meiotic transcriptome reveals seven distinct clusters with gene expression patterns specific to various meiotic stages. The study also identifies signaling pathways and intercellular communications, particularly between pre-granulosa and germ cells. Spatial transcriptome analysis shows the asymmetry, demonstrating cortex cells exclusively in the left ovary, modulating neighboring cell types through putative secreted signaling molecules. Overall, this single-cell analysis provides insights into the molecular mechanisms of the asymmetric development of avian ovaries, particularly the significant role of cortex cells in the left ovary.
  • loading
  • Alam, M.H., Miyano, T., 2020. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 19, 13-23.
    Anderson, E.L., Baltus, A.E., Roepers-Gajadien, H.L., Hassold, T.J., de Rooij, D.G., van Pelt, A.M., Page, D.C., 2008. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl. Acad. Sci. U.S.A. 105, 14976-14980.
    Aoyama, M., Shiraishi, A., Matsubara, S., Horie, K., Osugi, T., Kawada, T., Yasuda, K., Satake, H., 2019. Identification of a new theca/interstitial cell-specific gene and its biological role in growth of mouse ovarian follicles at the gonadotropin-independent stage. Front. Endocrinol. 10, 553.
    Arora, R., Abby, E., Ross, A.D., Cantu, A.V., Kissner, M.D., Castro, V., Ho, H.-Y.H., Livera, G., Laird, D.J., 2016. Meiotic onset is reliant on spatial distribution but independent of germ cell number in the mouse ovary. J. Cell Sci. 129, 2493-2499.
    Billmyre, K.K., Kesler, E.A., Tsuchiya, D., Corbin, T.J., Weaver, K., Moran, A., Yu, Z., Adams, L., Delventhal, K., Durnin, M., 2023. SYCP1 head-to-head assembly is required for chromosome synapsis in mouse meiosis. Sci. Adv. 9, eadi1562.
    Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420.
    Byskov, A.G., 1975. The role of the rete ovarii in meiosis and follicle formation in the cat, mink and ferret. J. Reprod. Fertil. 45, 201-209.
    Cai, C., Cai, P., Chu, G., 2019. Selection of suitable reference genes for core clock gene expression analysis by real-time qPCR in rat ovary granulosa cells. Mol. Biol. Rep. 46, 2941-2946.
    Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502.
    Carre, G.-A., Couty, I., Hennequet-Antier, C., Govoroun, M.S., 2011. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS One 6, e23959.
    Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., Li, F., Yu, X., Feng, Q., Wang, Z., Xie, H., Chen, X., Zeng, C., Wen, B., Zeng, L., Du, H., Tang, H., Xu, C., Xia, Y., Xia, H., Yang, H., Wang, J., Wang, J., Madsen, L., Brix, S., Kristiansen, K., Xu, X., Li, J., Wu, R., Jia, H., 2017. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 8, 875.
    Consortium, I.C.G.S., 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716.
    Del Priore, L., Pigozzi, M., 2012. Chromosomal axis formation and meiotic progression in chicken oocytes: a quantitative analysis. Cytogenet. Genome Res. 137, 15-21.
    Diaz, F.J., Anthony, K., Halfhill, A.N., 2011. Early avian follicular development is characterized by changes in transcripts involved in steroidogenesis, paracrine signaling and transcription. Mol. Reprod. Dev. 78, 212-223.
    Edson, M.A., Nagaraja, A.K., Matzuk, M.M., 2009. The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624-712.
    Eppig, J.J., 1991. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569-574.
    Estermann, M.A., Williams, S., Hirst, C.E., Roly, Z.Y., Serralbo, O., Adhikari, D., Powell, D., Major, A.T., Smith, C.A., 2020. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo. Cell Rep. 31.
    Falcao-Junior, J.O.A., Teixeira-Carvalho, A., Candido, E.B., Lages, E.L., Freitas G, G.F., Lamaita, R.M., Bonfim, L.P.F., Salera, R.B., Traiman P, P., da Silva-Filho, A.L., 2013. Assessment of chemokine serum levels in epithelial ovarian cancer patients. Tumori J. 99, 540-544.
    Gerecke, D.R., Olson, P.F., Koch, M., Knoll, J.H., Taylor, R., Hudson, D.L., Champliaud, M.-F., Olsen, B.R., Burgeson, R.E., 1997. Complete primary structure of two splice variants of collagen XII, and assignment of α1 (XII) collagen (COL12A1), α1 (IX) collagen (COL9A1), and α1 (XIX) collagen (COL19A1) to human chromosome 6q12-q13. Genomics 41, 236-242.
    Gershon, E., Dekel, N., 2020. Newly identified regulators of ovarian folliculogenesis and ovulation. Int. J. Mol. Sci. 21, 4565.
    Gonzalez-Moran, M.G., 2011. Histological and stereological changes in growing and regressing chicken ovaries during development. Anat. Rec. 294, 893-904.
    Guioli, S., Nandi, S., Zhao, D., Burgess-Shannon, J., Lovell-Badge, R., Clinton, M., 2014. Gonadal asymmetry and sex determination in birds. Sex. Dev. 8, 227-242.
    Guioli, S., Zhao, D., Nandi, S., Clinton, M., Lovell-Badge, R., 2020. Oestrogen in the chick embryo can induce chromosomally male ZZ left gonad epithelial cells to form an ovarian cortex that can support oogenesis. Development 147, dev181693.
    Hicks, D., Farsani, G.T., Laval, S., Collins, J., Sarkozy, A., Martoni, E., Shah, A., Zou, Y., Koch, M., Boennemann, C.G., 2014. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Hum. Mol. Genet. 23, 2353-2363.
    Hirst, C.E., Major, A.T., Smith, C.A., 2018. Sex determination and gonadal sex differentiation in the chicken model. Int. J. Dev. Biol. 62, 153-166.
    Hoshino, A., Koide, M., Ono, T., Yasugi, S., 2005. Sex-specific and left-right asymmetric expression pattern of Bmp7 in the gonad of normal and sex-reversed chicken embryos. Dev. Growth Differ. 47, 65-74.
    Hou, D., Yao, C., Xu, B., Luo, W., Ke, H., Li, Z., Qin, Y., Guo, T., 2022. Variations of C14ORF39 and SYCE1 identified in idiopathic premature ovarian insufficiency and nonobstructive azoospermia. J. Clin. Endocrinol. Metab. 107, 724-734.
    Hudson, Q.J., Smith, C.A., Sinclair, A.H., 2005a. Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Dev. Dynam. 233, 1052-1055.
    Hudson, Q.J., Smith, C.A., Sinclair, A.H., 2005b. Conserved expression of a novel gene during gonadal development. Dev. Dynam. 233, 1083-1090.
    Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M.V., Nie, Q., 2021. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088.
    Kherraf, Z.-E., Cazin, C., Bouker, A., Mustapha, S.F.B., Hennebicq, S., Septier, A., Coutton, C., Raymond, L., Nouchy, M., Thierry-Mieg, N., 2022. Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am. J. Hum. Genet. 109, 508-517.
    Kobayashi, M., Watanabe, K., Matsumura, R., Anayama, N., Miyamoto, A., Miyazaki, H., Miyazaki, K., Shimizu, T., Akashi, M., 2018. Involvement of the luteinizing hormone surge in the regulation of ovary and oviduct clock gene expression in mice. Gene Cell. 23, 649-657.
    Kui, H., Li, P., Wang, T., Luo, Y., Ning, C., Li, M., Liu, S., Zhu, Q., Li, J., Li, D., 2024. Dynamic mRNA expression during chicken ovarian follicle development. G3: Genes, Genomes, Genet. 14, jkad237.
    Levin, M., 2005. Left-right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122, 3-25.
    Leng, D., Zeng, B., Wang T., Chen, B., Li, D., Li, Z., 2024. Single-cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool. Res.
    Li, D., Ning, C., Zhang, J., Wang, Y., Tang, Q., Kui, H., Wang, T., He, M., Jin, L., Li, J., et al., 2022. Dynamic transcriptome and chromatin architecture in granulosa cells during chicken folliculogenesis. Nat. Commun. 13, 131.
    Li, J., Sun, C., Zheng, J., Li, J., Yi, G., Yang, N., 2022. Time-course transcriptional and chromatin accessibility profiling reveals genes associated with asymmetrical gonadal development in chicken embryos. Front. Cell Dev. Biol. 10, 832132.
    Lian, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923-930.
    Mfoundou, J., Guo, Y., Liu, M., Ran, X., Fu, D., Yan, Z., Li, M., Wang, X., 2021. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages. Poultry Sci. 100, 101191.
    Mittwoch, U., 2001. Genetics of mammalian sex determination: some unloved exceptions. J. Exp. Zool. 290, 484-489.
    Nicol, B., Estermann, M.A., Yao, H.H., Mellouk, N., 2022. Becoming female: ovarian differentiation from an evolutionary perspective. Front. Cell Dev. Biol. 10, 944776.
    Niu, W., Spradling, A.C., 2020. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc. Natl. Acad. Sci. U.S.A. 117, 20015-20026.
    Peng, Z., Man, Q., Meng, L., Wang, S., Cai, H., Zhang, C., Li, X., Wang, H., Zhu, G., 2023. A PITX2-HTR1B pathway regulates the asymmetric development of female gonads in chickens. PNAS nexus 2, pgad202.
    Qiao, G., Xing, J., Luo, X., Zhang, C., Yi, J., 2022. Integrated bioinformatics analysis and screening of hub genes in polycystic ovary syndrome. Endocrine 78, 615-627.
    Rengaraj, D., Han, J.Y., 2022. Female germ cell development in chickens and humans: the chicken oocyte enriched genes convergent and divergent with the human oocyte. Int. J. Mol. Sci. 23, 11412.
    Rengaraj, D., Lee, B.R., Lee, S.I., Seo, H.W., Han, J.Y., 2011a. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One 6, e19524.
    Rengaraj, D., Lee, B.R., Park, K.J., Lee, S.I., Kang, K.S., Choi, J.W., Kang, S.J., Song, G., Han, J.Y., 2011b. The distribution of neuron-specific gene family member 1 in brain and germ cells: implications for the regulation of germ-line development by brain. Dev. Dynam. 240, 850-861.
    Rengaraj, D., Lee, S.I., Yoo, M., Kim, T.H., Song, G., Han, J.Y., 2012. Expression and knockdown analysis of glucose phosphate isomerase in chicken primordial germ cells. Biol. Reprod. 87, 57, 51.-12.
    Richards, J.S., Pangas, S.A., 2010. The ovary: basic biology and clinical implications. J. Clin. Invest. 120, 963-972.
    Rodriguez-Leon, J., Esteban, C.R., Marti, M., Santiago-Josefat, B., Dubova, I., Rubiralta, X., Belmonte, J.C.I., 2008. Pitx2 regulates gonad morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 105, 11242-11247.
    Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A., 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502.
    Shao, S., Zhao, H., Lu, Z., Lei, X., Zhang, Y., 2021. Circadian rhythms within the female HPG axis: from physiology to etiology. Endocrinology 162, bqab117.
    Shimada, R., Ishiguro, K.-I., 2023. Cell cycle regulation for meiosis in mammalian germ cells. J. Reprod. Dev. 69, 139-146.
    Smith, C.A., Roeszler, K.N., Bowles, J., Koopman, P., Sinclair, A.H., 2008. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev. Biol. 8, 1-19.
    Soh, Y.S., Junker, J.P., Gill, M.E., Mueller, J.L., van Oudenaarden, A., Page, D.C., 2015. A gene regulatory program for meiotic prophase in the fetal ovary. PLoS Genet. 11, e1005531.
    Ukeshima, A., 1996. Germ cell death in the degenerating right ovary of the chick embryo. Zool. Sci. 13, 559-563.
    Ukeshima, A., Fujimoto, T., 1991. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick. Anat. Rec. 230, 378-386.
    Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., Lu, H., Pettersson, K., Palm, K., Katayama, S., 2020. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 11, 1147.
    Wicker, T., Robertson, J.S., Schulze, S.R., Feltus, F.A., Magrini, V., Morrison, J.A., Mardis, E.R., Wilson, R.K., Peterson, D.G., Paterson, A.H., 2005. The repetitive landscape of the chicken genome. Genome Res. 15, 126-136.
    Xu, Z., Liu, Q., Ning, C., Yang, M., Zhu, Q., Li, D., Wang, T., Li, F., 2024. miRNA profiling of chicken follicles during follicular development. Sci. Rep. 14, 2212.
    Yamamoto, I., Tsukada, A., Saito, N., Shimada, K., 2003. Profiles of mRNA expression of genes related to sex differentiation of the gonads in the chicken embryo. Poultry Sci. 82, 1462-1467.
    Yang, S.Y., Lee, H.J., Lee, H.C., Hwang, Y.S., Park, Y.H., Ono, T., Han, J.Y., 2018. The dynamic development of germ cells during chicken embryogenesis. Poultry Sci. 97, 650-657.
    Yu, G., Wang, L.-G., Han, Y., He, Q.-Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16, 284-287.
    Yu, J., Yan, L., Chen, Z., Li, H., Ying, S., Zhu, H., Shi, Z., 2017. Investigating right ovary degeneration in chick embryos by transcriptome sequencing. J. Reprod. Dev. 63, 295-303.
    Zheng, X., Wang, X., Cheng, X., Liu, Z., Yin, Y., Li, X., Huang, Z., Wang, Z., Guo, W., Ginhoux, F., 2023. Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer. Nat. Can. 4, 1138-1156.
    Zheng, Y.H., Rengaraj, D., Choi, J.W., Park, K.J., Lee, S.I., Han, J.Y., 2009. Expression pattern of meiosis associated SYCP family members during germline development in chickens. Reproduction 138, 483.
    Zuo, Q., Yang, Y., Lyu, Y., Yang, C., Chen, C., Salman, S., Huang, T.Y.-T., Wicks, E.E., Jackson, W., Datan, E., 2023. Plexin-B3 expression stimulates MET signaling, breast cancer stem cell specification, and lung metastasis. Cell Rep. 42, 112164.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return