Altinok, A., Karabay, A., de Jong, J., Balta, G.,Akyurek, E.G., 2023. Effects of gamma-aminobutyric acid on working memory and attention: a randomized, double-blinded, placebo-controlled, crossover trial. J. Psychopharmacol. 37, 554-565.
|
Barbazan, J., Perez-Gonzalez, C., Gomez-Gonzalez, M., Dedenon, M., Richon, S., Latorre, E., Serra, M., Mariani, P., Descroix, S., Sens, P., et al., 2023. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat. Commun. 14.
|
Bouchal, P., Dvorakova, M., Roumeliotis, T., Bortlicek, Z., Ihnatova, I., Prochazkova, I., Ho, J.T.C., Maryas, J., Imrichova, H., Budinska, E., et al., 2015. Combined proteomics and transcriptomics identifies carboxypeptidase b1 and nuclear factor κb (nf-κb) associated proteins as putative biomarkers of metastasis in low grade breast cancer. Mol. Cell. Proteomics. 14, 1814-1830.
|
Bruxel, E.M., Akutagava-Martins, G.C., Salatino-Oliveira, A., Genro, J.P., Zeni, C.P., Polanczyk, G.V., Chazan, R., Schmitz, M., Rohde, L.A.,Hutz, M.H., 2016. Gad1 gene polymorphisms are associated with hyperactivity in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. 171, 1099-1104.
|
Chang, F.-W., Fan, H.-C., Liu, J.-M., Fan, T.-P., Jing, J., Yang, C.-L.,Hsu, R.-J., 2017. Estrogen enhances the expression of the multidrug transporter gene abcg2-increasing drug resistance of breast cancer cells through estrogen receptors. Int. J. Mol. Sci. 18, 163.
|
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. Spatially resolved, highly multiplexed rna profiling in single cells. Science 348, aaa6090.
|
Dicken, M.S., Hughes, A.R.,Hentges, S.T., 2015. gad1 mrna as a reliable indicator of altered gaba release from orexigenic neurons in the hypothalamus. Eur. J. Neurosci. 42, 2644-2653.
|
Dong, X., Lv, S., Gu, D., Zhang, X.,Ye, Z., 2021. Up-regulation of l antigen family member 3 associates with aggressive progression of breast cancer. Front. Oncol. 10.
|
Dong, K.,Zhang, S., 2022. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739.
|
Dries, R., Zhu, Q., Dong, R., Eng, C.-H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al., 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 1-31.
|
Du, J., Yang, Y.-C., An, Z.-J., Zhang, M.-H., Fu, X.-H., Huang, Z.-F., Yuan, Y.,Hou, J., 2023. Advances in spatial transcriptomics and related data analysis strategies. J. Transl. Med. 21, 330.
|
Eckhardt, M., Yaghootfam, A., Fewou, S.N., Zoller, I.,Gieselmann, V., 2005. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin. Biochem. J. 388, 245-254.
|
England, J.,Loughna, S., 2013. Heavy and light roles: myosin in the morphogenesis of the heart. Cell. Mol. Life Sci. 70, 1221-1239.
|
Gunduz, U.R., Gunaldi, M., Isiksacan, N., Gunduz, S., Okuturlar, Y.,Kocoglu, H., 2016. A new marker for breast cancer diagnosis, human epididymis protein 4: a preliminary study. Mol. Clin. Oncol. 5, 355-360.
|
Guo, H., Shi, L., 2023. Ultimate negative sampling for contrastive learning. ICASSP 2023, in: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, pp. 1–5.
|
Guo, L., Kong, D., Liu, J., Zhan, L., Luo, L., Zheng, W., Zheng, Q., Chen, C.,Sun, S., 2023a. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 12, 3.
|
Guo, T.T., Yuan, Z.Y., Pan, Y., Wang, J.K., Chen, F.L., Zhang, M.Q.,Li, X.Y., 2023b. Spiral: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. Genome Biol. 24.
|
Hu, J., Li, X., Coleman, K., Schroeder, A., Ma, N., Irwin, D.J., Lee, E.B., Shinohara, R.T.,Li, M., 2021. Spagcn: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342-1351.
|
Huo, Y.Y., Guo, Y.L., Wang, J.K., Xue, H.J., Feng, Y.J., Chen, W.Z.,Li, X.Y., 2023. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. J. Genet. Genomics 50, 720-733.
|
Ingles, J., Goldstein, J., Thaxton, C., Caleshu, C., Corty, E.W., Crowley, S.B., Dougherty, K., Harrison, S.M., McGlaughon, J., Milko, L.V., et al., 2019. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genomic Precis. Med. 12, e002460.
|
Li, L., Li, Z., Li, Y., Yin, X.-m.,Xu, X. 2024. Step: Spatial Transcriptomics Embedding Procedure for Multi-Scale Biological Heterogeneities Revelation in Multiple Samples bioRxiv.
|
Li, A.Q., Su, X.T., Tian, Y., Song, G.B., Zan, L.S.,Wang, H.B., 2021. Effect of actin alpha cardiac muscle 1 on the proliferation and differentiation of bovine myoblasts and preadipocytes. Animals 11.
|
Li, J., Chen, S., Pan, X., Yuan, Y.,Shen, H.-B., 2022. Cell clustering for spatial transcriptomics data with graph neural networks. Nat. Comput. Sci. 2, 399-408.
|
Li, Z.,Zhou, X., 2022. Bass: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies. Genome Biol. 23, 168.
|
Liao, J., Lu, X., Shao, X., Zhu, L.,Fan, X., 2021. Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39, 43-58.
|
Lin, S., Liu, C., Zhou, P., Hu, Z.Y., Wang, S., Zhao, R., Zheng, Y., Lin, L., Xing, E., Liang, X.J., 2024a. Prototypical graph contrastive learning. IEEE Transact. Neural Networks Learn. Syst. 35, 2747-2758.
|
Lin, S.L., Zhao, F.Y., Wu, Z.H., Yao, J.H., Zhao, Y.,Yuan, Z.Y., 2024b. Streamlining spatial omics data analysis with pysodb. Nat. Protoc. 19.
|
Long, Y., Ang, K.S., Li, M., Chong, K.L.K., Sethi, R., Zhong, C., Xu, H., Ong, Z., Sachaphibulkij, K., Chen, A., et al., 2023. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat. Commun. 14, 1155.
|
Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M.,Cai, L., 2014. Single-cell in situ rna profiling by sequential hybridization. Nat. Methods 11, 360-361.
|
Mitchell, A.C., Jiang, Y., Peter, C.,Akbarian, S., 2015. Transcriptional regulation of gad1 gaba synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr. Res. 167, 28-34.
|
O’Neill, J., Bollegala, D., 2021. Semantically-conditioned negative samples for efficient contrastive learning. arXiv. https://doi.org/10.48550/arXiv.2102.06603.
|
Oord, A.v.d., Li, Y.,Vinyals, O. 2019. Representation Learning with Contrastive Predictive Coding arXiv.
|
Peng, L., He, X., Peng, X., Li, Z.,Zhang, L., 2023. Stgnnks: identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Comput. Biol. Med. 166, 107440.
|
Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q. 2020. Stlearn: Integrating Spatial Location, Tissue Morphology and Gene Expression to Find Cell Types, Cell-Cell Interactions and Spatial Trajectories within Undissociated Tissues bioRxiv.
|
Qin, H., Yuan, Y., Yuan, M., Wang, H.,Yang, Y., 2024. Degradation of azgp1 suppresses the progression of breast cancer cells via trim25. Environ. Toxicol. 39, 882-889.
|
Ren, H., Walker, B.L., Cang, Z.,Nie, Q., 2022. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nat. Commun. 13, 1-14.
|
Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463.(-+).
|
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F.,Regev, A., 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502.
|
Shang, L.,Zhou, X., 2022. Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13, 7203.
|
Sheng, J.J.,Jin, J.P., 2016. tnni1, tnni2 and tnni3: evolution, regulation, and protein structure-function relationships. Gene 576, 385-394.
|
Shi, Y.-J., Tsang, J.Y.S., Ni, Y.-B.,Tse, G.M., 2017. Intratumoral heterogeneity in breast cancer: a comparison of primary and metastatic breast cancers. Oncol. 22, 487-490.
|
Tang, W., Guo, X., Niu, L., Song, D., Han, B.,Zhang, H., 2020. Identification of key molecular targets that correlate with breast cancer through bioinformatic methods. J. Gene Med. 22, e3141.
|
Tringler, B., Zhuo, S., Pilkington, G., Torkko, K.C., Singh, M., Lucia, M.S., Heinz, D.E., Papkoff, J.,Shroyer, K.R., 2005. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res. 11, 1842-1848.
|
Varrone, M., Tavernari, D., Santamaria-Martinez, A., Walsh, L.A.,Ciriello, G., 2024. Cellcharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat. Genet. 56.
|
Wang, Y., Sheng, N., Xie, Y., Chen, S., Lu, J., Zhang, Z., Shan, Q., Wu, D., Zheng, G., Li, M., et al., 2019. Low expression of crisp3 predicts a favorable prognosis in patients with mammary carcinoma. J. Cell. Physiol. 234, 13629-13638.
|
Wolf, F.A., Angerer, P.,Theis, F.J., 2018. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
|
Xu, C., Jin, X., Wei, S., Wang, P., Luo, M., Xu, Z., Yang, W., Cai, Y., Xiao, L., Lin, X., et al., 2022. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Res. 50, e131.
|
Yu, N., Zhang, D., Zhang, W., Liu, Z., Qiao, X., Wang, C., Zhao, M., Chao, B., Li, W., Marinis, Y.D., et al. 2023. Stgcl: A Versatile Cross-Modality Fusion Method Based on Multi-Modal Graph Contrastive Learning for Spatial Transcriptomics bioRxiv.
|
Yuan, Z., 2024. Mender: fast and scalable tissue structure identification in spatial omics data. Nat. Commun. 15, 207.
|
Yuan, Z.Y., Pan, W.T., Zhao, X., Zhao, F.Y., Xu, Z.M., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J.H., 2023. Sodb facilitates comprehensive exploration of spatial omics data (vol 20, pg 387, 2023). Nat. Methods 20, 623.-623.
|
Yuan, Z.Y., Zhao, F.Y., Lin, S.L., Zhao, Y., Yao, J.H., Cui, Y., Zhang, X.Y.,Zhao, Y., 2024. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. Nat. Methods 21.
|
Zeng, Y., Yin, R., Luo, M., Chen, J., Pan, Z., Lu, Y., Yu, W.,Yang, Y., 2023. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings Bioinf. 24, bbad048.
|
Zhang, C., Dong, K., Aihara, K., Chen, L.,Zhang, S., 2023a. Stamarker: determining spatial domain-specific variable genes with saliency maps in deep learning. Nucleic Acids Res. 51, e103.-e103.
|
Zhang, Y., Miller, J.A., Park, J., Lelieveldt, B.P., Long, B., Abdelaal, T., Aevermann, B.D., Biancalani, T., Comiter, C., Dzyubachyk, O., et al., 2023b. Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain. Sci. Rep. 13, 9567.
|
Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., Williams, S.R., Uytingco, C.R., Taylor, S.E.B., Nghiem, P., et al., 2021. Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39, 1375.(-+).
|
Zheng, Y.Z., Pan, S., Lee, V.C., Zheng, Y.,Yu, P.S. 2022. Rethinking and Scaling up Graph Contrastive Learning: an Extremely Efficient Approach with Group Discrimination. Paper Presented at: 36th Conference on Neural Information Processing Systems (NeurIPS), Electr Network.
|
Zhou, X., Dong, K.,Zhang, S., 2023. Integrating spatial transcriptomics data across different conditions, technologies and developmental stages. Nat. Comput. Sci. 3, 894-906.
|
Zong, Y., Yu, T., Wang, X., Wang, Y., Hu, Z.,Li, Y. 2022. Const: an Interpretable Multi-Modal Contrastive Learning Framework for Spatial Transcriptomics bioRxiv.
|
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2020. Deep graph contrastive representation learning. arXiv. https://doi.org/10.48550/arXiv.2006.0413.
|