9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

SpaGRA: Graph augmentation facilitates domain identification for spatially resolved transcriptomics

doi: 10.1016/j.jgg.2024.09.015
Funds:

This work was supported by the National Natural Science Foundation of China (Nos. 62303271, U1806202, 62103397), the Natural Science Foundation of Shandong Province (ZR2023QF081). Funding for open access charge: the National Natural Science Foundation of China (Nos. 62303271, U1806202).

  • Received Date: 2024-06-23
  • Accepted Date: 2024-09-22
  • Rev Recd Date: 2024-09-07
  • Available Online: 2025-07-11
  • Publish Date: 2024-10-02
  • Recent advances in spatially resolved transcriptomics (SRT) have provided new opportunities for characterizing spatial structures of various tissues. Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks. Currently, most methods define adjacency relation between cells or spots by their spatial distance in SRT data, which overlooks key biological interactions like gene expression similarities, and leads to inaccuracies in spatial domain identification. To tackle this challenge, we propose a novel method, SpaGRA (https://github.com/sunxue-yy/SpaGRA), for automatic multi-relationship construction based on graph augmentation. SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks (GATs). This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning. Additionally, SpaGRA uses these multi-view relationships to construct negative samples, addressing sampling bias posed by random selection. Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols. Using SpaGRA, we analyze the functional regions in the mouse hypothalamus, identify key genes related to heart development in mouse embryos, and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data. Overall, SpaGRA can effectively characterize spatial structures across diverse SRT datasets.
  • loading
  • Altinok, A., Karabay, A., de Jong, J., Balta, G.,Akyurek, E.G., 2023. Effects of gamma-aminobutyric acid on working memory and attention: a randomized, double-blinded, placebo-controlled, crossover trial. J. Psychopharmacol. 37, 554-565.
    Barbazan, J., Perez-Gonzalez, C., Gomez-Gonzalez, M., Dedenon, M., Richon, S., Latorre, E., Serra, M., Mariani, P., Descroix, S., Sens, P., et al., 2023. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat. Commun. 14.
    Bouchal, P., Dvorakova, M., Roumeliotis, T., Bortlicek, Z., Ihnatova, I., Prochazkova, I., Ho, J.T.C., Maryas, J., Imrichova, H., Budinska, E., et al., 2015. Combined proteomics and transcriptomics identifies carboxypeptidase b1 and nuclear factor κb (nf-κb) associated proteins as putative biomarkers of metastasis in low grade breast cancer. Mol. Cell. Proteomics. 14, 1814-1830.
    Bruxel, E.M., Akutagava-Martins, G.C., Salatino-Oliveira, A., Genro, J.P., Zeni, C.P., Polanczyk, G.V., Chazan, R., Schmitz, M., Rohde, L.A.,Hutz, M.H., 2016. Gad1 gene polymorphisms are associated with hyperactivity in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. 171, 1099-1104.
    Chang, F.-W., Fan, H.-C., Liu, J.-M., Fan, T.-P., Jing, J., Yang, C.-L.,Hsu, R.-J., 2017. Estrogen enhances the expression of the multidrug transporter gene abcg2-increasing drug resistance of breast cancer cells through estrogen receptors. Int. J. Mol. Sci. 18, 163.
    Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. Spatially resolved, highly multiplexed rna profiling in single cells. Science 348, aaa6090.
    Dicken, M.S., Hughes, A.R.,Hentges, S.T., 2015. gad1 mrna as a reliable indicator of altered gaba release from orexigenic neurons in the hypothalamus. Eur. J. Neurosci. 42, 2644-2653.
    Dong, X., Lv, S., Gu, D., Zhang, X.,Ye, Z., 2021. Up-regulation of l antigen family member 3 associates with aggressive progression of breast cancer. Front. Oncol. 10.
    Dong, K.,Zhang, S., 2022. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739.
    Dries, R., Zhu, Q., Dong, R., Eng, C.-H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al., 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 1-31.
    Du, J., Yang, Y.-C., An, Z.-J., Zhang, M.-H., Fu, X.-H., Huang, Z.-F., Yuan, Y.,Hou, J., 2023. Advances in spatial transcriptomics and related data analysis strategies. J. Transl. Med. 21, 330.
    Eckhardt, M., Yaghootfam, A., Fewou, S.N., Zoller, I.,Gieselmann, V., 2005. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin. Biochem. J. 388, 245-254.
    England, J.,Loughna, S., 2013. Heavy and light roles: myosin in the morphogenesis of the heart. Cell. Mol. Life Sci. 70, 1221-1239.
    Gunduz, U.R., Gunaldi, M., Isiksacan, N., Gunduz, S., Okuturlar, Y.,Kocoglu, H., 2016. A new marker for breast cancer diagnosis, human epididymis protein 4: a preliminary study. Mol. Clin. Oncol. 5, 355-360.
    Guo, H., Shi, L., 2023. Ultimate negative sampling for contrastive learning. ICASSP 2023, in: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, pp. 1–5.
    Guo, L., Kong, D., Liu, J., Zhan, L., Luo, L., Zheng, W., Zheng, Q., Chen, C.,Sun, S., 2023a. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 12, 3.
    Guo, T.T., Yuan, Z.Y., Pan, Y., Wang, J.K., Chen, F.L., Zhang, M.Q.,Li, X.Y., 2023b. Spiral: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. Genome Biol. 24.
    Hu, J., Li, X., Coleman, K., Schroeder, A., Ma, N., Irwin, D.J., Lee, E.B., Shinohara, R.T.,Li, M., 2021. Spagcn: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342-1351.
    Huo, Y.Y., Guo, Y.L., Wang, J.K., Xue, H.J., Feng, Y.J., Chen, W.Z.,Li, X.Y., 2023. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. J. Genet. Genomics 50, 720-733.
    Ingles, J., Goldstein, J., Thaxton, C., Caleshu, C., Corty, E.W., Crowley, S.B., Dougherty, K., Harrison, S.M., McGlaughon, J., Milko, L.V., et al., 2019. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genomic Precis. Med. 12, e002460.
    Li, L., Li, Z., Li, Y., Yin, X.-m.,Xu, X. 2024. Step: Spatial Transcriptomics Embedding Procedure for Multi-Scale Biological Heterogeneities Revelation in Multiple Samples bioRxiv.
    Li, A.Q., Su, X.T., Tian, Y., Song, G.B., Zan, L.S.,Wang, H.B., 2021. Effect of actin alpha cardiac muscle 1 on the proliferation and differentiation of bovine myoblasts and preadipocytes. Animals 11.
    Li, J., Chen, S., Pan, X., Yuan, Y.,Shen, H.-B., 2022. Cell clustering for spatial transcriptomics data with graph neural networks. Nat. Comput. Sci. 2, 399-408.
    Li, Z.,Zhou, X., 2022. Bass: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies. Genome Biol. 23, 168.
    Liao, J., Lu, X., Shao, X., Zhu, L.,Fan, X., 2021. Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39, 43-58.
    Lin, S., Liu, C., Zhou, P., Hu, Z.Y., Wang, S., Zhao, R., Zheng, Y., Lin, L., Xing, E., Liang, X.J., 2024a. Prototypical graph contrastive learning. IEEE Transact. Neural Networks Learn. Syst. 35, 2747-2758.
    Lin, S.L., Zhao, F.Y., Wu, Z.H., Yao, J.H., Zhao, Y.,Yuan, Z.Y., 2024b. Streamlining spatial omics data analysis with pysodb. Nat. Protoc. 19.
    Long, Y., Ang, K.S., Li, M., Chong, K.L.K., Sethi, R., Zhong, C., Xu, H., Ong, Z., Sachaphibulkij, K., Chen, A., et al., 2023. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat. Commun. 14, 1155.
    Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M.,Cai, L., 2014. Single-cell in situ rna profiling by sequential hybridization. Nat. Methods 11, 360-361.
    Mitchell, A.C., Jiang, Y., Peter, C.,Akbarian, S., 2015. Transcriptional regulation of gad1 gaba synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr. Res. 167, 28-34.
    O’Neill, J., Bollegala, D., 2021. Semantically-conditioned negative samples for efficient contrastive learning. arXiv. https://doi.org/10.48550/arXiv.2102.06603.
    Oord, A.v.d., Li, Y.,Vinyals, O. 2019. Representation Learning with Contrastive Predictive Coding arXiv.
    Peng, L., He, X., Peng, X., Li, Z.,Zhang, L., 2023. Stgnnks: identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Comput. Biol. Med. 166, 107440.
    Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q. 2020. Stlearn: Integrating Spatial Location, Tissue Morphology and Gene Expression to Find Cell Types, Cell-Cell Interactions and Spatial Trajectories within Undissociated Tissues bioRxiv.
    Qin, H., Yuan, Y., Yuan, M., Wang, H.,Yang, Y., 2024. Degradation of azgp1 suppresses the progression of breast cancer cells via trim25. Environ. Toxicol. 39, 882-889.
    Ren, H., Walker, B.L., Cang, Z.,Nie, Q., 2022. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nat. Commun. 13, 1-14.
    Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463.(-+).
    Satija, R., Farrell, J.A., Gennert, D., Schier, A.F.,Regev, A., 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502.
    Shang, L.,Zhou, X., 2022. Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13, 7203.
    Sheng, J.J.,Jin, J.P., 2016. tnni1, tnni2 and tnni3: evolution, regulation, and protein structure-function relationships. Gene 576, 385-394.
    Shi, Y.-J., Tsang, J.Y.S., Ni, Y.-B.,Tse, G.M., 2017. Intratumoral heterogeneity in breast cancer: a comparison of primary and metastatic breast cancers. Oncol. 22, 487-490.
    Tang, W., Guo, X., Niu, L., Song, D., Han, B.,Zhang, H., 2020. Identification of key molecular targets that correlate with breast cancer through bioinformatic methods. J. Gene Med. 22, e3141.
    Tringler, B., Zhuo, S., Pilkington, G., Torkko, K.C., Singh, M., Lucia, M.S., Heinz, D.E., Papkoff, J.,Shroyer, K.R., 2005. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res. 11, 1842-1848.
    Varrone, M., Tavernari, D., Santamaria-Martinez, A., Walsh, L.A.,Ciriello, G., 2024. Cellcharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat. Genet. 56.
    Wang, Y., Sheng, N., Xie, Y., Chen, S., Lu, J., Zhang, Z., Shan, Q., Wu, D., Zheng, G., Li, M., et al., 2019. Low expression of crisp3 predicts a favorable prognosis in patients with mammary carcinoma. J. Cell. Physiol. 234, 13629-13638.
    Wolf, F.A., Angerer, P.,Theis, F.J., 2018. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
    Xu, C., Jin, X., Wei, S., Wang, P., Luo, M., Xu, Z., Yang, W., Cai, Y., Xiao, L., Lin, X., et al., 2022. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Res. 50, e131.
    Yu, N., Zhang, D., Zhang, W., Liu, Z., Qiao, X., Wang, C., Zhao, M., Chao, B., Li, W., Marinis, Y.D., et al. 2023. Stgcl: A Versatile Cross-Modality Fusion Method Based on Multi-Modal Graph Contrastive Learning for Spatial Transcriptomics bioRxiv.
    Yuan, Z., 2024. Mender: fast and scalable tissue structure identification in spatial omics data. Nat. Commun. 15, 207.
    Yuan, Z.Y., Pan, W.T., Zhao, X., Zhao, F.Y., Xu, Z.M., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J.H., 2023. Sodb facilitates comprehensive exploration of spatial omics data (vol 20, pg 387, 2023). Nat. Methods 20, 623.-623.
    Yuan, Z.Y., Zhao, F.Y., Lin, S.L., Zhao, Y., Yao, J.H., Cui, Y., Zhang, X.Y.,Zhao, Y., 2024. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. Nat. Methods 21.
    Zeng, Y., Yin, R., Luo, M., Chen, J., Pan, Z., Lu, Y., Yu, W.,Yang, Y., 2023. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings Bioinf. 24, bbad048.
    Zhang, C., Dong, K., Aihara, K., Chen, L.,Zhang, S., 2023a. Stamarker: determining spatial domain-specific variable genes with saliency maps in deep learning. Nucleic Acids Res. 51, e103.-e103.
    Zhang, Y., Miller, J.A., Park, J., Lelieveldt, B.P., Long, B., Abdelaal, T., Aevermann, B.D., Biancalani, T., Comiter, C., Dzyubachyk, O., et al., 2023b. Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain. Sci. Rep. 13, 9567.
    Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., Williams, S.R., Uytingco, C.R., Taylor, S.E.B., Nghiem, P., et al., 2021. Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39, 1375.(-+).
    Zheng, Y.Z., Pan, S., Lee, V.C., Zheng, Y.,Yu, P.S. 2022. Rethinking and Scaling up Graph Contrastive Learning: an Extremely Efficient Approach with Group Discrimination. Paper Presented at: 36th Conference on Neural Information Processing Systems (NeurIPS), Electr Network.
    Zhou, X., Dong, K.,Zhang, S., 2023. Integrating spatial transcriptomics data across different conditions, technologies and developmental stages. Nat. Comput. Sci. 3, 894-906.
    Zong, Y., Yu, T., Wang, X., Wang, Y., Hu, Z.,Li, Y. 2022. Const: an Interpretable Multi-Modal Contrastive Learning Framework for Spatial Transcriptomics bioRxiv.
    Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L., 2020. Deep graph contrastive representation learning. arXiv. https://doi.org/10.48550/arXiv.2006.0413.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return