9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

The interplay between histone modifications and nuclear lamina in genome regulation

doi: 10.1016/j.jgg.2024.10.005
Funds:

Shenzhen Bay Laboratory Joint Optical Microscopic Imaging Technology Development Program (S234602004-1 to Q.P.). We acknowledge the usage of BioRender (https://www.biorender.com/) for creating the figures.

This work was financially supported by the National Natural Science Foundation of China (32100450 and 32471370 to Q.P., 12372302 to J.Q.), the Guangdong Pearl River Talent Program (2021QN02Y781 to Q.P.), and the Evident &

  • Received Date: 2024-06-19
  • Accepted Date: 2024-10-09
  • Rev Recd Date: 2024-10-08
  • Available Online: 2025-07-11
  • Publish Date: 2024-10-18
  • Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies. Histone modifications act as the key factors to modulate the chromatin accessibility. Different histone modifications are strongly associated with the localization of chromatin. Heterochromatin primarily localizes at the nuclear periphery, where it interacts with lamina proteins to suppress gene expression. In this review, we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery. We use lamina-associated domains (LADs) as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development. In the end, we highlight the technologies that are currently used to identify and visualize histone modifications and LADs, which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
  • loading
  • Ahanger, S.H., Delgado, R.N., Gil, E., Cole, M.A., Zhao, J., Hong, S.J., Kriegstein, A.R., Nowakowski, T.J., Pollen, A.A., Lim, D.A., 2021. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat. Neurosci. 24, 1235-1242.
    Altemose, N., Maslan, A., Rios-Martinez, C., Lai, A., White, J.A., Streets, A., 2020. μDamID: a microfluidic approach for joint imaging and sequencing of protein-DNA interactions in single cells. Cell Syst. 11, 354-366.
    Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., Zoghbi, H.Y., 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188.
    Babbio, F., Castiglioni, I., Cassina, C., Gariboldi, M.B., Pistore, C., Magnani, E., Badaracco, G., Monti, E., Bonapace, I.M., 2012. Knock-down of methyl CpG-binding protein 2 (MeCP2) causes alterations in cell proliferation and nuclear lamins expression in mammalian cells. BMC Cell Biol. 13, 19.
    Bakay, M., Wang, Z., Melcon, G., Schiltz, L., Xuan, J., Zhao, P., Sartorelli, V., Seo, J., Pegoraro, E., Angelini C., et al., 2006. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 129, 996-1013.
    Berman, B.P., Weisenberger, D.J., Aman, J.F., Hinoue, T., Ramjan, Z., Liu, Y., Noushmehr, H., Lange, C.P., van Dijk, C.M., Tollenaar, R.A., et al., 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40-46.
    Banerjee, A., Sengupta, K., 2020. Alteration of epigenetic landscape by lamin A mutations: hallmark of dilated cardiomyopathy. bioRxiv. 2020.05.01.071803.
    Bannister, A.J., Kouzarides, T., 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395.
    Bersaglieri, C., Kresoja-Rakic, J., Gupta, S., Bar, D., Kuzyakiv, R., Panatta, M., Santoro, R., 2022. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat. Commun. 13, 1483.
    Bhattacharjee, P., Banerjee, A., Dasgupta, D., Sengupta, K., 2013. Structural alterations of Lamin A protein in dilated cardiomyopathy. Biochemistry 52, 4229-4241.
    Bian, Q., Khanna, N., Alvikas, J., Belmont, A.S., 2013. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J. Cell Biol. 203, 767-783.
    Biferali, B., Bianconi, V., Perez, D.F., Kronawitter, S.P., Marullo, F., Maggio, R., Santini, T., Polverino, F., Biagioni, S., Summa, V., et al., 2021. Prdm16-mediated H3K9 methylation controls fibro-adipogenic progenitors identity during skeletal muscle repair. Sci. Adv. 7, eabd9371.
    Borsos, M., Perricone, S.M., Schauer, T., Pontabry, J., de Luca, K.L., de Vries, S.S., Ruiz-Morales, E.R., Torres-Padilla, M.E., Kind, J., 2019. Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733.
    Bossen, C., Mansson, R., Murre, C., 2012. Chromatin topology and the regulation of antigen receptor assembly. Annu. Rev. Immunol. 30, 337-356.
    Boyle, S., Rodesch, M.J., Halvensleben, H.A., Jeddeloh, J.A., Bickmore, W.A., 2011. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901-909.
    Brady, B.L., Steinel, N.C., Bassing, C.H., 2010. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 185, 3801-3808.
    Briand, N., Collas, P., 2020. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 21, 85.
    Cabianca, D.S., Munoz-Jimenez, C., Kalck, V., Gaidatzis, D., Padeken, J., Seeber, A., Askjaer, P., Gasser, S.M., 2019. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature 569, 734-739.
    Cao, Q., Wang, W., Williams, J.B., Yang, F., Wang, Z.J., Yan, Z., 2020. Targeting histone K4 trimethylation for treatment of cognitive and synaptic deficits in mouse models of Alzheimer's disease. Sci. Adv. 6, eabc8096.
    Carollo, P.S., Barra V., 2022. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: examples from natural and accelerated aging. Biol. Cell. 115, e2200023.
    Chang, L., Li, M., Shao, S., Li, C., Ai, S., Xue, B., Hou, Y., Zhang, Y., Li, R., Fan, X., et al., 2022. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell 13, 258-280.
    Chauhan, S., Goodwin, J.G., Chauhan, S., Manyam, G., Wang, J., Kamat, A.M., Boyd, D.D., 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16-28.
    Chen, B., Ge, T., Jian, M., Chen, L., Fang, Z., He, Z., Huang, C., An, Y., Yin, S., Xiong, Y., et al., 2023. Transmembrane nuclease NUMEN/ENDOD1 regulates DNA repair pathway choice at the nuclear periphery. Nat. Cell Biol. 25, 1004-1016.
    Chen, S., Luperchio, T.R., Wong, X., Doan, E.B., Byrd, A.T., Roy Choudhury, K., Reddy, K.L., Krangel, M.S., 2018. A Lamina-associated domain border governs nuclear lamina interactions, transcription, and recombination of the Tcrb Locus. Cell Rep. 25, 1729-1740.
    Chen, Y., Zhang, Y., Wang, Y., Zhang, L., Brinkman, E.K., Adam, S.A., Goldman, R., van Steensel, B., Ma, J., Belmont, A.S., 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025-4048.
    Denoth-Lippuner, A., Jessberger, S., 2021. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 22, 223-236.
    Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang, Q., Bi, S., et al., 2021. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203-4219.
    Duan, T., Cupp, R., Geyer, P.K., 2021. Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr. Biol. 31, 1450-1462.
    Dupont, S., Wickstrom, S.A., 2022. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 23, 624-643.
    Frost, B., Bardai, F.H., Feany, M.B., 2016. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr. Biol. 26, 129-136.
    Frost, B., Hemberg, M., Lewis, J., Feany, M.B., 2014. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366.
    Fukuda, K., Shimura, C., Miura, H., Tanigawa, A., Suzuki, T., Dohmae, N., Hiratani, I., Shinkai, Y., 2021. Regulation of mammalian 3D genome organization and histone H3K9 dimethylation by H3K9 methyltransferases. Commun. Biol. 4, 571.
    Garcia-Nieto, P.E., Schwartz, E.K., King, D.A., Paulsen, J., Collas, P., Herrera, R.E., Morrison, A.J., 2017. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J. 36, 2829-2843.
    Gesson, K., Rescheneder, P., Skoruppa, M.P., von Haeseler, A., Dechat, T., Foisner, R., 2016. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 26, 462-473.
    Gigante, C.M., Dibattista, M., Dong, F.N., Zheng, X., Yue, S., Young, S.G., Reisert, J., Zheng, Y., Zhao, H., 2017. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat. Commun. 8, 15098.
    Gonzalez-Sandoval, A., Towbin, B.D., Kalck, V., Cabianca, D.S., Gaidatzis, D., Hauer, M.H., Geng, L., Wang, L., Yang, T., Wang, X., et al., 2015. Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans Embryos. Cell 163, 1333-1347.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., Wessels, L., de Laat, W., et al., 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948-951.
    Guerreiro, I., Rang, F.J., Kawamura, Y.K., Groenveld, F.C., Beek, R.E.v., Lochs, S.J.A., Boele, E., Peters, A.H.M.F., Kind, J., 2023. H3K27me3 dictates atypical genome-nuclear lamina interactions and allelic asymmetry during early embryogenesis. bioRxiv 2023.02.06.527307.
    Hakelien, A.M., Delbarre, E., Gaustad, K.G., Buendia, B., Collas, P., 2008. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp. Cell Res. 314, 1869-1880.
    Handoko, L., Xu, H., Li, G., Ngan, C.Y., Chew, E., Schnapp, M., Lee, C.W.H., Ye, C., Ping, J.L.H., Mulawadi, F., et al., 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630-638.
    Harr, J.C., Luperchio, T.R., Wong, X., Cohen, E., Wheelan, S.J., Reddy, K.L., 2015. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33-52.
    Hauser, P.S., Narayanaswami, V., Ryan, R.O., 2011. Apolipoprotein E: from lipid transport to neurobiology. Prog. Lipid Res. 50, 62-74.
    Heffler, J., Shah, P.P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., Prosser, B.L., 2020. A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circ. Res. 126, e10-e26.
    Herman, A. B., Anerillas, C., Harris, S. C., Munk, R., Martindale, J. L., Yang, X., Mazan-Mamczarz, K., Zhang, Y., Heckenbach, I. J., Scheibye-Knudsen, M., De, S., Sen, P., Abdelmohsen, K., Gorospe, M., 2021. Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Res 49, 7389–7405.
    Herrera, I., Fernandes, J.A.L., Shir-Mohammadi, K., Levesque, J., Matta, P., 2023. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration. Cell Death Dis. 14, 701.
    Hirano, Y., Hizume, K., Kimura, H., Takeyasu, K., Haraguchi, T., Hiraoka, Y., 2012. Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J. Biol. Chem. 287, 42654-42663.
    Holla, S., Dhakshnamoorthy, J., Folco, H.D., Balachandran, V., Xiao, H., Sun, L.L., Wheeler, D., Zofall, M., Grewal, S.I.S., 2020. Positioning heterochromatin at the nuclear periphery suppresses histone turnover to promote epigenetic inheritance. Cell 180, 150-164.
    Hong, T., Li, J., Guo, L., Cavalier, M., Wang, T., Dou, Y., DeLaFuente, A., Fang, S., Guzman, A., Wohlan, K., et al., 2023. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat. Aging 3, 1387-1400.
    Hu, H., Ji, Q., Song, M., Ren, J., Liu, Z., Wang, Z., Liu, X., Yan, K., Hu, J., Jing, Y., et al., 2020. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 48, 6001-6018.
    Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cotte,e R.J., Boeke, J.D., 2005. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell Biol. 25, 10060-10070.
    Ibrahim, A., Papin, C., Mohideen-Abdul, K., Le Gras, S., Stoll, I., Bronner, C., Dimitrov, S., Klaholz, B.P., Hamiche, A., 2021. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 372, eabd5581.
    Ichino, L., Boone, B.A., Strauskulage, L., Harris, C.J., Kaur, G., Gladstone, M.A., Tan, M., Feng, S., Jami-Alahmadi, Y., Duttke, S.H., et al., 2021. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science 372, 1434-1439.
    Ikegami, K., Secchia, S., Almakki, O., Lieb, J.D., Moskowitz, I.P., 2020. Phosphorylated Lamin A/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria. Dev. Cell 52, 699-713.
    Ip, J.P.K., Mellios, N., Sur, M., 2018. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat. Rev. Neurosci. 19, 368-382.
    Isermann, P., Lammerding, J., 2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23, R1113-R1121.
    Janssen, A., Marcelot, A., Breusegem, S., Legrand, P., Zinn-Justin, S., Larrieu, D., 2022. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor-Guillermo progeria syndrome cells. Nucleic Acids Res. 50, 9260-9278.
    Jia, Y., Vong, J.S., Asafova, A., Garvalov, B.K., Caputo, L., Cordero, J., Singh, A., Boettger, T., Gunther, S., Fink, L., et al., 2019. Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J. Exp. Med. 216, 1377-1395.
    Jung, H.J., Coffinier, C., Choe, Y., Beigneux, A.P., Davies, B.S., Yang, S.H., Barnes, R.H. 2ndHong, J., Sun, T., Pleasure, S.J., et al., 2012. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. U. S. A 109, E423-E431.
    Kalukula, Y., Stephens, A.D., Lammerding, J., Gabriele, S., 2022. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583-602.
    Karoutas, A., Szymanski, W., Rausch, T., Guhathakurta, S., Rog-Zielinska, E.A., Peyronnet, R., Seyfferth, J., Chen, H., de Leeuw, R., Herquel, B., et al., 2019. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248-1260.
    Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., Henikoff, S., 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930.
    Khan, A., Metts, J.M., Collins, L.C., Mills, C.A., Li, K., Brademeyer, A.L., Bowman, B.M., Major, M.B., Aube, J., Herring, L.E., et al., 2023. SETD2 maintains nuclear lamina stability to safeguard the genome. bioRxiv. 2023.09.28.560032.
    Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S.S., Janssen, H., Amendola, M., Nolen, L.D., Bickmore, W.A., van Steensel, B., 2013. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178-192.
    Kind, J., van Steensel, B., 2014. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF. Nucleus 5, 124–130.
    Kiseleva, A.A., Cheng, Y.C., Smith, C.L., Katz, R.A., Poleshko, A., 2023. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina. Nucleus 14, 2165602.
    Kohler, F., Bormann, F., Raddatz, G., Gutekunst, J., Corless, S., Musch, T., Lonsdorf, A. S., Erhardt, S., Lyko, F., Rodriguez-Paredes, M., 2020. Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Med. 12, 46.
    Kosak, S.T., Skok, J.A., Medina, K.L., Riblet, R., Le Beau, M.M., Fisher, A.G., Singh, H., 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158-162.
    Larson, A.G., Elnatan, D., Keenen, M.M., Trnka, M.J., Johnston, J.B., Burlingame, A.L., Agard, D.A., Redding, S., Narlikar, G.J., 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240.
    Laugesen, A., Hoejfeldt, J.W., Helin, K., 2019. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8-18.
    Lawson, H.A., Liang, Y., Wang, T., 2023. Transposable elements in mammalian chromatin organization. Nat. Rev. Genet. 24, 712-723.
    Lee, M.Y., Lee, J., Hyeon, S.J., Cho, H., Hwang, Y.J., Shin, J.Y., McKee, A.C., Kowall, N.W., Kim, J.I., Stein, T.D., et al., 2020. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer's disease. Aging Cell 19, e13153.
    Lenain, C., de Graaf, C.A., Pagie, L., Visser, N.L., de Haas, M., de Vries, S.S., Peric-Hupkes, D., van Steensel, B., Peeper, D.S., 2017. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence. Genome Res. 27, 1634-1644.
    Li Mow Chee, F., Beernaert, B., Griffith, B.G.C., Loftus, A.E.P., Kumar, Y., Wills, J.C., Lee, M., Valli, J., Wheeler, A.P., Armstrong, J.D., et al., 2023. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat. Commun. 14, 1602.
    Li, Z., Jiao, X., Di Sante, G., Ertel, A., Casimiro, M.C., Wang, M., Katiyar, S., Ju, X., Klopfenstein, D.V., Tozeren, A., et al., 2019. Cyclin D1 integrates G9a-mediated histone methylation. Oncogene 38, 4232-4249.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
    Loi, M., Cenni, V., Duchi, S., Squarzoni, S., Lopez-Otin, C., Foisner, R., Lattanzi, G., Capanni, C., 2016. Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 7, 15662-15677.
    Lu, L., Liu, X., Huang, W.K., Giusti-Rodriguez, P., Cui, J., Zhang, S., Xu, W., Wen, Z., Ma, S., Rosen, J. D., et al., 2020. Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell 79, 521-534.
    Madsen-OEsterbye, J., Abdelhalim, M., Baudement, M.O., Collas, P., 2022. Local euchromatin enrichment in lamina-associated domains anticipates their repositioning in the adipogenic lineage. Genome Biol. 23, 91.
    Marchal, C., Sima, J., Gilbert, D.M., 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721-737.
    Marullo, F., Cesarini, E., Antonelli, L., Gregoretti, F., Oliva, G., Lanzuolo, C., 2016. Nucleoplasmic lamin A/C and Polycomb group of proteins: an evolutionarily conserved interplay. Nucleus 7, 103-111.
    Matias, I., Diniz, L.P., Damico, I.V., Araujo, A.P.B., Neves, L.D.S., Vargas, G., Leite, R.E.P., Suemoto, C.K., Nitrini, R., Jacob-Filho, W., et al., 2022. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 21, e13521.
    Mattar, P., Stevanovic, M., Nad, I., Cayouette, M., 2018. Casz1 controls higher-order nuclear organization in rod photoreceptors. Proc. Natl. Acad. Sci. U. S. A 115, E7987-E7996.
    Merideth, M.A., Gordon, L.B., Clauss, S., Sachdev, V., Smith, A.C., Perry, M.B., Brewer, C.C., Zalewski, C., Kim, H.J., Solomon, B., et al., 2008. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358, 592-604.
    Meuleman, W., Peric-Hupkes, D., Kind, J., Beaudry, J.B., Pagie, L., Kellis, M., Reinders, M., Wessels, L., van Steensel, B., 2013. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270-280.
    Montes de Oca, R., Andreassen, P.R., Wilson, K.L., 2011. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2, 580-590.
    Moore, L.D., Le, T., Fan, G., 2013. DNA Methylation and its basic function. Neuropsychopharmacology 38, 23-38.
    Napoletano, F., Ferrari, B.G., Voto, I.A.P., Santin, A., Celora, L., Campaner, E., Dezi, C., Bertossi, A., Valentino, E., Santorsola, M., et al., 2021. The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep. 36, 109694.
    Nativio R., Lan Y., Donahue G., Sidoli S., Berson A., Srinivasan A.R., Shcherbakova O., Amlie-Wolf A., Nie J., Cui X., et al., 2020. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nat. Genet. 52, 1024-1035.
    Nichols M.H., Corces V.G., 2021. Principles of 3D compartmentalization of the human genome. Cell Rep. 35, 109330.
    Oldenburg, A., Briand, N., Soerensen, A.L., Cahyani, I., Shah, A., Moskaug, J., Collas, P., 2017. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J. Cell Biol. 216, 2731-2743.
    Pascual-Reguant, L., Blanco, E., Galan, S., Le Dily, F., Cuartero, Y., Serra-Bardenys, G., Di Carlo, V., Iturbide, A., Cebria-Costa, J.P., Nonell, L., et al., 2018. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nat. Commun. 9, 3420.
    Peng, Q., Huang, Z., Sun, K., Liu, Y., Yoon, C.W., Harrison, R.E.S., Schmitt, D.L., Zhu, L., Wu, Y., Tasan, I., et al., 2022. Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nat. Commun. 13, 7933.
    Peng, Q., Lu, S., Shi, Y., Pan, Y., Limsakul, P., Chernov, A.V., Qiu, J., Chai, X., Shi, Y., Wang, P., et al., 2018. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc. Natl. Acad. Sci. U. S. A 115, E11681-E11690.
    Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S.W., Solovei, I., Brugman, W., Graf, S., Flicek, P., Kerkhoven, R.M., van Lohuizen, M., et al., 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603-613.
    Perovanovic, J., Dell'Orso, S., Gnochi, V.F., Jaiswal, J.K., Sartorelli, V., Vigouroux, C., Mamchaoui, K., Mouly, V., Bonne, G., Hoffman, E.P., 2016. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med. 8, 335ra358.
    Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., van Steensel, B., 2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005-1014.
    Poleshko, A., Mansfield, K.M., Burlingame, C.C., Andrake, M.D., Shah, N.R., Katz, R.A., 2013. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep. 5, 292-301.
    Poleshko, A., Shah, P.P., Gupta, M., Babu, A., Morley, M.P., Manderfield, L.J., Ifkovits, J.L., Calderon, D., Aghajanian, H., Sierra-Pagan, J.E., et al., 2017. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171, 573-587.
    Popova, L.V., Nagarajan, P., Lovejoy, C.M., Sunkel, B.D., Gardner, M.L., Wang, M., Freitas, M.A., Stanton, B.Z., Parthun, M.R., 2021. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res. 49, 12136-12151.
    Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
    Robson, M.I., de las Heras, J.I., Czapiewski, R., Le Thanh, P., Booth Daniel, G., Kelly, D.A., Webb, S., Kerr Alastair, R.W., Schirmer Eric, C., 2016. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol. Cell 62, 834-847.
    Robson, M.I., de Las Heras, J.I., Czapiewski, R., Sivakumar, A., Kerr,A.R.W., Schirmer, E.C., 2017. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res. 27, 1126-1138.
    Samson, C., Petitalot, A., Celli, F., Herrada, I., Ropars, V., Le Du, M.-H., Nhiri, N., Jacquet, E., Arteni, A.-A., Buendia, B., 2018. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res. 46, 10460-10473.
    Sarkar, A., Hochedlinger, K., 2013. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15-30.
    Scaffidi, P., Misteli, T., 2006. Lamin A-dependent nuclear defects in human aging. Science 312, 1059-1063.
    Schatz, D.G., Ji, Y., 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251-263.
    Sebestyen, E., Marullo, F., Lucini, F., Petrini, C., Bianchi, A., Valsoni, S., Olivieri, I., Antonelli, L., Gregoretti, F., Oliva, G., et al., 2020. SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome. Nat. Commun. 11, 6274.
    Seelbinder, B., Ghosh, S., Schneider, S.E., Scott, A.K., Berman, A.G., Goergen, C.J., Margulies, K.B., Bedi, K.C., Jr., Casas, E., et al., 2021. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat. Biomed. Eng. 5, 1500-1516.
    Shah, P.P., Lv, W., Rhoades, J.H., Poleshko, A., Abbey, D., Caporizzo, M.A., Linares-Saldana, R., Heffler, J.G., Sayed, N., Thomas, D., et al., 2021. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell 28, 938-954.
    Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C.L., Koulena, N., Cronin, C., Karp, C., Liaw, E.J., et al., 2018. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363-376.
    Shiraishi, K., Shah, P.P., Morley, M.P., Loebel, C., Santini, G.T., Katzen, J., Basil, M.C., Lin, S.M., Planer, J.D., Cantu E., et al., 2023. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478-1492.
    Siegenfeld, A.P., Roseman, S.A., Roh, H., Lue, N.Z., Wagen, C.C., Zhou, E., Johnstone, S.E., Aryee, M.J., Liau, B.B., 2022. Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery. Nat. Commun. 13, 4199.
    Smith, C.L., Poleshko A., Epstein J.A., 2021. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res. 49, 6181-6195.
    Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., Guck, J., Joffe, B., 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356-368.
    Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys, D., Foisner, R., Peichl, L., et al., 2013. LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584-598.
    Steensel, B.v., Henikoff, S., 2000. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 18, 424-428.
    Stephens, A.D., Liu, P.Z., Banigan, E.J., Almassalha, L.M., Backman, V., Adam, S.A., Goldman, R.D., Marko, J.F., 2018. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29, 220-233.
    Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O'Shaughnessy-Kirwan, A., et al., 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59-64.
    Strahl, B.D., Allis, C.D., 2000. The language of covalent histone modifications. Nature 403, 41-45.
    Towbin, B.D., Gonzalez-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meister, P., Askjaer, P., Gasser, S.M., 2012. Step-wise methylation of Histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934-947.
    Trojer, P., Reinberg, D., 2007. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1-13.
    Tropberger, P., Pott, S., Keller, C., Kamieniarz-Gdula, K., Caron, M., Richter, F., Li, G., Mittler, G., Liu, E.T., Buhler, M., et al., 2013. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859-872.
    Ucar, D., Marquez, E.J., Chung, C.H., Marches, R., Rossi, R.J., Uyar, A., Wu, T.C., George, J., Stitzel, M.L., Palucka, A.K., et al., 2017. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123-3144.
    Vahabikashi, A., Adam, S.A., Medalia, O., Goldman, R.D., 2022. Nuclear lamins: structure and function in mechanobiology. APL Bioeng. 6, 011503.
    van Schaik, T., Vos, M., Peric-Hupkes, D., Hn, C.P., van Steensel, B., 2020. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636.
    van Steensel, B., Belmont, A.S., 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780-791.
    Vukic, M., Chouaref, J., Della, C.V., Dogan, S., Ratner, F., Hogenboom, J.Z.M., Epp, T.A., Chawengsaksophak, K., Vonk, K.K.D., Breukel, C., et al., 2024. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. Sci. Adv. 10, eadk3384.
    Whitton, H., Singh, L.N., Patrick, M.A., Price, A.J., Osorio, F.G., Lopez-Otin, C., Bochkis, I.M., 2018. Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver. Aging Cell 17, e12742.
    Wong, X., Cutler, J.A., Hoskins, V.E., Gordon, M., Madugundu, A.K., Pandey, A., Reddy, K.L., 2021. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci. Alliance 4, e202000774.
    Xu, S., Wang, N., Zuccaro, M.V., Gerhardt, J., Iyyappan, R., Scatolin, G.N., Jiang, Z., Baslan, T., Koren, A., Egli, D., 2024. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat. Commun. 15, 5247.
    Yang, N., Occean, J.R., Melters, D.P., Shi, C., Wang, L., Stransky, S., Doyle, M.E., Cui, C.Y., Delannoy, M., Fan, J., et al., 2023. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol. Cell 83, 1659-1676.
    Yan, Z., Ji, L., Huo, X., Wang, Q., Zhang, Y., Wen, B., 2020. G9a/GLP-sensitivity of H3K9me2 demarcates two types of genomic compartments. Dev. Reprod. Biol. 18, 359-370.
    Ye, Q., Callebaut, I., Pezhman, A., Courvalin, J. C., Worman, H. J., 1997. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983–14989.
    Ye, Q., Worman, H. J., 1994. Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J. Biol. Chem. 269, 11306–11311.
    Zacharias, W.J., Frank, D.B., Zepp, J.A., Morley, M.P., Alkhaleel, F.A., Kong, J., Zhou, S., Cantu, E., Morrisey, E.E., 2018. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251-255.
    Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., Liu, X., Ren, R., Xu, X., Ocampo, A., et al., 2015. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163.
    Zhao, H., Ji, Q., Wu, Z., Wang, S., Ren, J., Yan, K., Wang, Z., Hu, J., Chu, Q., Hu, H., et al., 2022. Destabilizing heterochromatin by APOE mediates senescence. Nat. Aging 2, 303-316.
    Zheng, Y., Liu, A., Wang, Z.J., Cao, Q., Wang, W., Lin, L., Ma, K., Zhang, F., Wei, J., Matas, E., et al., 2019. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 142, 787-807.
    Zhou, V.W., Goren, A., Bernstein, B.E., 2011. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7-18.
    Zullo, J. M., Demarco, I. A., Piqué-Regi, R., Gaffney, D. J., Epstein, C. B., Spooner, C. J., Luperchio, T. R., Bernstein, B. E., Pritchard, J. K., Reddy, K. L., Singh, H., 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149, 1474–1487.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return