Ahanger, S.H., Delgado, R.N., Gil, E., Cole, M.A., Zhao, J., Hong, S.J., Kriegstein, A.R., Nowakowski, T.J., Pollen, A.A., Lim, D.A., 2021. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat. Neurosci. 24, 1235-1242.
|
Altemose, N., Maslan, A., Rios-Martinez, C., Lai, A., White, J.A., Streets, A., 2020. μDamID: a microfluidic approach for joint imaging and sequencing of protein-DNA interactions in single cells. Cell Syst. 11, 354-366.
|
Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., Zoghbi, H.Y., 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188.
|
Babbio, F., Castiglioni, I., Cassina, C., Gariboldi, M.B., Pistore, C., Magnani, E., Badaracco, G., Monti, E., Bonapace, I.M., 2012. Knock-down of methyl CpG-binding protein 2 (MeCP2) causes alterations in cell proliferation and nuclear lamins expression in mammalian cells. BMC Cell Biol. 13, 19.
|
Bakay, M., Wang, Z., Melcon, G., Schiltz, L., Xuan, J., Zhao, P., Sartorelli, V., Seo, J., Pegoraro, E., Angelini C., et al., 2006. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 129, 996-1013.
|
Berman, B.P., Weisenberger, D.J., Aman, J.F., Hinoue, T., Ramjan, Z., Liu, Y., Noushmehr, H., Lange, C.P., van Dijk, C.M., Tollenaar, R.A., et al., 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44, 40-46.
|
Banerjee, A., Sengupta, K., 2020. Alteration of epigenetic landscape by lamin A mutations: hallmark of dilated cardiomyopathy. bioRxiv. 2020.05.01.071803.
|
Bannister, A.J., Kouzarides, T., 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395.
|
Bersaglieri, C., Kresoja-Rakic, J., Gupta, S., Bar, D., Kuzyakiv, R., Panatta, M., Santoro, R., 2022. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat. Commun. 13, 1483.
|
Bhattacharjee, P., Banerjee, A., Dasgupta, D., Sengupta, K., 2013. Structural alterations of Lamin A protein in dilated cardiomyopathy. Biochemistry 52, 4229-4241.
|
Bian, Q., Khanna, N., Alvikas, J., Belmont, A.S., 2013. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J. Cell Biol. 203, 767-783.
|
Biferali, B., Bianconi, V., Perez, D.F., Kronawitter, S.P., Marullo, F., Maggio, R., Santini, T., Polverino, F., Biagioni, S., Summa, V., et al., 2021. Prdm16-mediated H3K9 methylation controls fibro-adipogenic progenitors identity during skeletal muscle repair. Sci. Adv. 7, eabd9371.
|
Borsos, M., Perricone, S.M., Schauer, T., Pontabry, J., de Luca, K.L., de Vries, S.S., Ruiz-Morales, E.R., Torres-Padilla, M.E., Kind, J., 2019. Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733.
|
Bossen, C., Mansson, R., Murre, C., 2012. Chromatin topology and the regulation of antigen receptor assembly. Annu. Rev. Immunol. 30, 337-356.
|
Boyle, S., Rodesch, M.J., Halvensleben, H.A., Jeddeloh, J.A., Bickmore, W.A., 2011. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901-909.
|
Brady, B.L., Steinel, N.C., Bassing, C.H., 2010. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 185, 3801-3808.
|
Briand, N., Collas, P., 2020. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 21, 85.
|
Cabianca, D.S., Munoz-Jimenez, C., Kalck, V., Gaidatzis, D., Padeken, J., Seeber, A., Askjaer, P., Gasser, S.M., 2019. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature 569, 734-739.
|
Cao, Q., Wang, W., Williams, J.B., Yang, F., Wang, Z.J., Yan, Z., 2020. Targeting histone K4 trimethylation for treatment of cognitive and synaptic deficits in mouse models of Alzheimer's disease. Sci. Adv. 6, eabc8096.
|
Carollo, P.S., Barra V., 2022. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: examples from natural and accelerated aging. Biol. Cell. 115, e2200023.
|
Chang, L., Li, M., Shao, S., Li, C., Ai, S., Xue, B., Hou, Y., Zhang, Y., Li, R., Fan, X., et al., 2022. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell 13, 258-280.
|
Chauhan, S., Goodwin, J.G., Chauhan, S., Manyam, G., Wang, J., Kamat, A.M., Boyd, D.D., 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16-28.
|
Chen, B., Ge, T., Jian, M., Chen, L., Fang, Z., He, Z., Huang, C., An, Y., Yin, S., Xiong, Y., et al., 2023. Transmembrane nuclease NUMEN/ENDOD1 regulates DNA repair pathway choice at the nuclear periphery. Nat. Cell Biol. 25, 1004-1016.
|
Chen, S., Luperchio, T.R., Wong, X., Doan, E.B., Byrd, A.T., Roy Choudhury, K., Reddy, K.L., Krangel, M.S., 2018. A Lamina-associated domain border governs nuclear lamina interactions, transcription, and recombination of the Tcrb Locus. Cell Rep. 25, 1729-1740.
|
Chen, Y., Zhang, Y., Wang, Y., Zhang, L., Brinkman, E.K., Adam, S.A., Goldman, R., van Steensel, B., Ma, J., Belmont, A.S., 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025-4048.
|
Denoth-Lippuner, A., Jessberger, S., 2021. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 22, 223-236.
|
Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang, Q., Bi, S., et al., 2021. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203-4219.
|
Duan, T., Cupp, R., Geyer, P.K., 2021. Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr. Biol. 31, 1450-1462.
|
Dupont, S., Wickstrom, S.A., 2022. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 23, 624-643.
|
Frost, B., Bardai, F.H., Feany, M.B., 2016. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr. Biol. 26, 129-136.
|
Frost, B., Hemberg, M., Lewis, J., Feany, M.B., 2014. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366.
|
Fukuda, K., Shimura, C., Miura, H., Tanigawa, A., Suzuki, T., Dohmae, N., Hiratani, I., Shinkai, Y., 2021. Regulation of mammalian 3D genome organization and histone H3K9 dimethylation by H3K9 methyltransferases. Commun. Biol. 4, 571.
|
Garcia-Nieto, P.E., Schwartz, E.K., King, D.A., Paulsen, J., Collas, P., Herrera, R.E., Morrison, A.J., 2017. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J. 36, 2829-2843.
|
Gesson, K., Rescheneder, P., Skoruppa, M.P., von Haeseler, A., Dechat, T., Foisner, R., 2016. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 26, 462-473.
|
Gigante, C.M., Dibattista, M., Dong, F.N., Zheng, X., Yue, S., Young, S.G., Reisert, J., Zheng, Y., Zhao, H., 2017. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat. Commun. 8, 15098.
|
Gonzalez-Sandoval, A., Towbin, B.D., Kalck, V., Cabianca, D.S., Gaidatzis, D., Hauer, M.H., Geng, L., Wang, L., Yang, T., Wang, X., et al., 2015. Perinuclear anchoring of H3K9-methylated chromatin stabilizes induced cell fate in C. elegans Embryos. Cell 163, 1333-1347.
|
Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., Wessels, L., de Laat, W., et al., 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948-951.
|
Guerreiro, I., Rang, F.J., Kawamura, Y.K., Groenveld, F.C., Beek, R.E.v., Lochs, S.J.A., Boele, E., Peters, A.H.M.F., Kind, J., 2023. H3K27me3 dictates atypical genome-nuclear lamina interactions and allelic asymmetry during early embryogenesis. bioRxiv 2023.02.06.527307.
|
Hakelien, A.M., Delbarre, E., Gaustad, K.G., Buendia, B., Collas, P., 2008. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp. Cell Res. 314, 1869-1880.
|
Handoko, L., Xu, H., Li, G., Ngan, C.Y., Chew, E., Schnapp, M., Lee, C.W.H., Ye, C., Ping, J.L.H., Mulawadi, F., et al., 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630-638.
|
Harr, J.C., Luperchio, T.R., Wong, X., Cohen, E., Wheelan, S.J., Reddy, K.L., 2015. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33-52.
|
Hauser, P.S., Narayanaswami, V., Ryan, R.O., 2011. Apolipoprotein E: from lipid transport to neurobiology. Prog. Lipid Res. 50, 62-74.
|
Heffler, J., Shah, P.P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., Prosser, B.L., 2020. A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circ. Res. 126, e10-e26.
|
Herman, A. B., Anerillas, C., Harris, S. C., Munk, R., Martindale, J. L., Yang, X., Mazan-Mamczarz, K., Zhang, Y., Heckenbach, I. J., Scheibye-Knudsen, M., De, S., Sen, P., Abdelmohsen, K., Gorospe, M., 2021. Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Res 49, 7389–7405.
|
Herrera, I., Fernandes, J.A.L., Shir-Mohammadi, K., Levesque, J., Matta, P., 2023. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration. Cell Death Dis. 14, 701.
|
Hirano, Y., Hizume, K., Kimura, H., Takeyasu, K., Haraguchi, T., Hiraoka, Y., 2012. Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J. Biol. Chem. 287, 42654-42663.
|
Holla, S., Dhakshnamoorthy, J., Folco, H.D., Balachandran, V., Xiao, H., Sun, L.L., Wheeler, D., Zofall, M., Grewal, S.I.S., 2020. Positioning heterochromatin at the nuclear periphery suppresses histone turnover to promote epigenetic inheritance. Cell 180, 150-164.
|
Hong, T., Li, J., Guo, L., Cavalier, M., Wang, T., Dou, Y., DeLaFuente, A., Fang, S., Guzman, A., Wohlan, K., et al., 2023. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat. Aging 3, 1387-1400.
|
Hu, H., Ji, Q., Song, M., Ren, J., Liu, Z., Wang, Z., Liu, X., Yan, K., Hu, J., Jing, Y., et al., 2020. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 48, 6001-6018.
|
Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cotte,e R.J., Boeke, J.D., 2005. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell Biol. 25, 10060-10070.
|
Ibrahim, A., Papin, C., Mohideen-Abdul, K., Le Gras, S., Stoll, I., Bronner, C., Dimitrov, S., Klaholz, B.P., Hamiche, A., 2021. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 372, eabd5581.
|
Ichino, L., Boone, B.A., Strauskulage, L., Harris, C.J., Kaur, G., Gladstone, M.A., Tan, M., Feng, S., Jami-Alahmadi, Y., Duttke, S.H., et al., 2021. MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science 372, 1434-1439.
|
Ikegami, K., Secchia, S., Almakki, O., Lieb, J.D., Moskowitz, I.P., 2020. Phosphorylated Lamin A/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria. Dev. Cell 52, 699-713.
|
Ip, J.P.K., Mellios, N., Sur, M., 2018. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat. Rev. Neurosci. 19, 368-382.
|
Isermann, P., Lammerding, J., 2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23, R1113-R1121.
|
Janssen, A., Marcelot, A., Breusegem, S., Legrand, P., Zinn-Justin, S., Larrieu, D., 2022. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor-Guillermo progeria syndrome cells. Nucleic Acids Res. 50, 9260-9278.
|
Jia, Y., Vong, J.S., Asafova, A., Garvalov, B.K., Caputo, L., Cordero, J., Singh, A., Boettger, T., Gunther, S., Fink, L., et al., 2019. Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J. Exp. Med. 216, 1377-1395.
|
Jung, H.J., Coffinier, C., Choe, Y., Beigneux, A.P., Davies, B.S., Yang, S.H., Barnes, R.H. 2ndHong, J., Sun, T., Pleasure, S.J., et al., 2012. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. U. S. A 109, E423-E431.
|
Kalukula, Y., Stephens, A.D., Lammerding, J., Gabriele, S., 2022. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583-602.
|
Karoutas, A., Szymanski, W., Rausch, T., Guhathakurta, S., Rog-Zielinska, E.A., Peyronnet, R., Seyfferth, J., Chen, H., de Leeuw, R., Herquel, B., et al., 2019. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248-1260.
|
Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., Henikoff, S., 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930.
|
Khan, A., Metts, J.M., Collins, L.C., Mills, C.A., Li, K., Brademeyer, A.L., Bowman, B.M., Major, M.B., Aube, J., Herring, L.E., et al., 2023. SETD2 maintains nuclear lamina stability to safeguard the genome. bioRxiv. 2023.09.28.560032.
|
Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S.S., Janssen, H., Amendola, M., Nolen, L.D., Bickmore, W.A., van Steensel, B., 2013. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178-192.
|
Kind, J., van Steensel, B., 2014. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF. Nucleus 5, 124–130.
|
Kiseleva, A.A., Cheng, Y.C., Smith, C.L., Katz, R.A., Poleshko, A., 2023. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina. Nucleus 14, 2165602.
|
Kohler, F., Bormann, F., Raddatz, G., Gutekunst, J., Corless, S., Musch, T., Lonsdorf, A. S., Erhardt, S., Lyko, F., Rodriguez-Paredes, M., 2020. Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Med. 12, 46.
|
Kosak, S.T., Skok, J.A., Medina, K.L., Riblet, R., Le Beau, M.M., Fisher, A.G., Singh, H., 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158-162.
|
Larson, A.G., Elnatan, D., Keenen, M.M., Trnka, M.J., Johnston, J.B., Burlingame, A.L., Agard, D.A., Redding, S., Narlikar, G.J., 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240.
|
Laugesen, A., Hoejfeldt, J.W., Helin, K., 2019. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8-18.
|
Lawson, H.A., Liang, Y., Wang, T., 2023. Transposable elements in mammalian chromatin organization. Nat. Rev. Genet. 24, 712-723.
|
Lee, M.Y., Lee, J., Hyeon, S.J., Cho, H., Hwang, Y.J., Shin, J.Y., McKee, A.C., Kowall, N.W., Kim, J.I., Stein, T.D., et al., 2020. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer's disease. Aging Cell 19, e13153.
|
Lenain, C., de Graaf, C.A., Pagie, L., Visser, N.L., de Haas, M., de Vries, S.S., Peric-Hupkes, D., van Steensel, B., Peeper, D.S., 2017. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence. Genome Res. 27, 1634-1644.
|
Li Mow Chee, F., Beernaert, B., Griffith, B.G.C., Loftus, A.E.P., Kumar, Y., Wills, J.C., Lee, M., Valli, J., Wheeler, A.P., Armstrong, J.D., et al., 2023. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat. Commun. 14, 1602.
|
Li, Z., Jiao, X., Di Sante, G., Ertel, A., Casimiro, M.C., Wang, M., Katiyar, S., Ju, X., Klopfenstein, D.V., Tozeren, A., et al., 2019. Cyclin D1 integrates G9a-mediated histone methylation. Oncogene 38, 4232-4249.
|
Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
|
Loi, M., Cenni, V., Duchi, S., Squarzoni, S., Lopez-Otin, C., Foisner, R., Lattanzi, G., Capanni, C., 2016. Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 7, 15662-15677.
|
Lu, L., Liu, X., Huang, W.K., Giusti-Rodriguez, P., Cui, J., Zhang, S., Xu, W., Wen, Z., Ma, S., Rosen, J. D., et al., 2020. Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell 79, 521-534.
|
Madsen-OEsterbye, J., Abdelhalim, M., Baudement, M.O., Collas, P., 2022. Local euchromatin enrichment in lamina-associated domains anticipates their repositioning in the adipogenic lineage. Genome Biol. 23, 91.
|
Marchal, C., Sima, J., Gilbert, D.M., 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721-737.
|
Marullo, F., Cesarini, E., Antonelli, L., Gregoretti, F., Oliva, G., Lanzuolo, C., 2016. Nucleoplasmic lamin A/C and Polycomb group of proteins: an evolutionarily conserved interplay. Nucleus 7, 103-111.
|
Matias, I., Diniz, L.P., Damico, I.V., Araujo, A.P.B., Neves, L.D.S., Vargas, G., Leite, R.E.P., Suemoto, C.K., Nitrini, R., Jacob-Filho, W., et al., 2022. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 21, e13521.
|
Mattar, P., Stevanovic, M., Nad, I., Cayouette, M., 2018. Casz1 controls higher-order nuclear organization in rod photoreceptors. Proc. Natl. Acad. Sci. U. S. A 115, E7987-E7996.
|
Merideth, M.A., Gordon, L.B., Clauss, S., Sachdev, V., Smith, A.C., Perry, M.B., Brewer, C.C., Zalewski, C., Kim, H.J., Solomon, B., et al., 2008. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358, 592-604.
|
Meuleman, W., Peric-Hupkes, D., Kind, J., Beaudry, J.B., Pagie, L., Kellis, M., Reinders, M., Wessels, L., van Steensel, B., 2013. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270-280.
|
Montes de Oca, R., Andreassen, P.R., Wilson, K.L., 2011. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2, 580-590.
|
Moore, L.D., Le, T., Fan, G., 2013. DNA Methylation and its basic function. Neuropsychopharmacology 38, 23-38.
|
Napoletano, F., Ferrari, B.G., Voto, I.A.P., Santin, A., Celora, L., Campaner, E., Dezi, C., Bertossi, A., Valentino, E., Santorsola, M., et al., 2021. The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep. 36, 109694.
|
Nativio R., Lan Y., Donahue G., Sidoli S., Berson A., Srinivasan A.R., Shcherbakova O., Amlie-Wolf A., Nie J., Cui X., et al., 2020. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nat. Genet. 52, 1024-1035.
|
Nichols M.H., Corces V.G., 2021. Principles of 3D compartmentalization of the human genome. Cell Rep. 35, 109330.
|
Oldenburg, A., Briand, N., Soerensen, A.L., Cahyani, I., Shah, A., Moskaug, J., Collas, P., 2017. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J. Cell Biol. 216, 2731-2743.
|
Pascual-Reguant, L., Blanco, E., Galan, S., Le Dily, F., Cuartero, Y., Serra-Bardenys, G., Di Carlo, V., Iturbide, A., Cebria-Costa, J.P., Nonell, L., et al., 2018. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nat. Commun. 9, 3420.
|
Peng, Q., Huang, Z., Sun, K., Liu, Y., Yoon, C.W., Harrison, R.E.S., Schmitt, D.L., Zhu, L., Wu, Y., Tasan, I., et al., 2022. Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nat. Commun. 13, 7933.
|
Peng, Q., Lu, S., Shi, Y., Pan, Y., Limsakul, P., Chernov, A.V., Qiu, J., Chai, X., Shi, Y., Wang, P., et al., 2018. Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proc. Natl. Acad. Sci. U. S. A 115, E11681-E11690.
|
Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S.W., Solovei, I., Brugman, W., Graf, S., Flicek, P., Kerkhoven, R.M., van Lohuizen, M., et al., 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603-613.
|
Perovanovic, J., Dell'Orso, S., Gnochi, V.F., Jaiswal, J.K., Sartorelli, V., Vigouroux, C., Mamchaoui, K., Mouly, V., Bonne, G., Hoffman, E.P., 2016. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med. 8, 335ra358.
|
Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., van Steensel, B., 2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005-1014.
|
Poleshko, A., Mansfield, K.M., Burlingame, C.C., Andrake, M.D., Shah, N.R., Katz, R.A., 2013. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep. 5, 292-301.
|
Poleshko, A., Shah, P.P., Gupta, M., Babu, A., Morley, M.P., Manderfield, L.J., Ifkovits, J.L., Calderon, D., Aghajanian, H., Sierra-Pagan, J.E., et al., 2017. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171, 573-587.
|
Popova, L.V., Nagarajan, P., Lovejoy, C.M., Sunkel, B.D., Gardner, M.L., Wang, M., Freitas, M.A., Stanton, B.Z., Parthun, M.R., 2021. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res. 49, 12136-12151.
|
Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
|
Robson, M.I., de las Heras, J.I., Czapiewski, R., Le Thanh, P., Booth Daniel, G., Kelly, D.A., Webb, S., Kerr Alastair, R.W., Schirmer Eric, C., 2016. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol. Cell 62, 834-847.
|
Robson, M.I., de Las Heras, J.I., Czapiewski, R., Sivakumar, A., Kerr,A.R.W., Schirmer, E.C., 2017. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res. 27, 1126-1138.
|
Samson, C., Petitalot, A., Celli, F., Herrada, I., Ropars, V., Le Du, M.-H., Nhiri, N., Jacquet, E., Arteni, A.-A., Buendia, B., 2018. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res. 46, 10460-10473.
|
Sarkar, A., Hochedlinger, K., 2013. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15-30.
|
Scaffidi, P., Misteli, T., 2006. Lamin A-dependent nuclear defects in human aging. Science 312, 1059-1063.
|
Schatz, D.G., Ji, Y., 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251-263.
|
Sebestyen, E., Marullo, F., Lucini, F., Petrini, C., Bianchi, A., Valsoni, S., Olivieri, I., Antonelli, L., Gregoretti, F., Oliva, G., et al., 2020. SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome. Nat. Commun. 11, 6274.
|
Seelbinder, B., Ghosh, S., Schneider, S.E., Scott, A.K., Berman, A.G., Goergen, C.J., Margulies, K.B., Bedi, K.C., Jr., Casas, E., et al., 2021. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat. Biomed. Eng. 5, 1500-1516.
|
Shah, P.P., Lv, W., Rhoades, J.H., Poleshko, A., Abbey, D., Caporizzo, M.A., Linares-Saldana, R., Heffler, J.G., Sayed, N., Thomas, D., et al., 2021. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell 28, 938-954.
|
Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C.L., Koulena, N., Cronin, C., Karp, C., Liaw, E.J., et al., 2018. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363-376.
|
Shiraishi, K., Shah, P.P., Morley, M.P., Loebel, C., Santini, G.T., Katzen, J., Basil, M.C., Lin, S.M., Planer, J.D., Cantu E., et al., 2023. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478-1492.
|
Siegenfeld, A.P., Roseman, S.A., Roh, H., Lue, N.Z., Wagen, C.C., Zhou, E., Johnstone, S.E., Aryee, M.J., Liau, B.B., 2022. Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery. Nat. Commun. 13, 4199.
|
Smith, C.L., Poleshko A., Epstein J.A., 2021. The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Res. 49, 6181-6195.
|
Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., Guck, J., Joffe, B., 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356-368.
|
Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys, D., Foisner, R., Peichl, L., et al., 2013. LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584-598.
|
Steensel, B.v., Henikoff, S., 2000. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 18, 424-428.
|
Stephens, A.D., Liu, P.Z., Banigan, E.J., Almassalha, L.M., Backman, V., Adam, S.A., Goldman, R.D., Marko, J.F., 2018. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29, 220-233.
|
Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O'Shaughnessy-Kirwan, A., et al., 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59-64.
|
Strahl, B.D., Allis, C.D., 2000. The language of covalent histone modifications. Nature 403, 41-45.
|
Towbin, B.D., Gonzalez-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meister, P., Askjaer, P., Gasser, S.M., 2012. Step-wise methylation of Histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934-947.
|
Trojer, P., Reinberg, D., 2007. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1-13.
|
Tropberger, P., Pott, S., Keller, C., Kamieniarz-Gdula, K., Caron, M., Richter, F., Li, G., Mittler, G., Liu, E.T., Buhler, M., et al., 2013. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859-872.
|
Ucar, D., Marquez, E.J., Chung, C.H., Marches, R., Rossi, R.J., Uyar, A., Wu, T.C., George, J., Stitzel, M.L., Palucka, A.K., et al., 2017. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123-3144.
|
Vahabikashi, A., Adam, S.A., Medalia, O., Goldman, R.D., 2022. Nuclear lamins: structure and function in mechanobiology. APL Bioeng. 6, 011503.
|
van Schaik, T., Vos, M., Peric-Hupkes, D., Hn, C.P., van Steensel, B., 2020. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636.
|
van Steensel, B., Belmont, A.S., 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780-791.
|
Vukic, M., Chouaref, J., Della, C.V., Dogan, S., Ratner, F., Hogenboom, J.Z.M., Epp, T.A., Chawengsaksophak, K., Vonk, K.K.D., Breukel, C., et al., 2024. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. Sci. Adv. 10, eadk3384.
|
Whitton, H., Singh, L.N., Patrick, M.A., Price, A.J., Osorio, F.G., Lopez-Otin, C., Bochkis, I.M., 2018. Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver. Aging Cell 17, e12742.
|
Wong, X., Cutler, J.A., Hoskins, V.E., Gordon, M., Madugundu, A.K., Pandey, A., Reddy, K.L., 2021. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci. Alliance 4, e202000774.
|
Xu, S., Wang, N., Zuccaro, M.V., Gerhardt, J., Iyyappan, R., Scatolin, G.N., Jiang, Z., Baslan, T., Koren, A., Egli, D., 2024. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat. Commun. 15, 5247.
|
Yang, N., Occean, J.R., Melters, D.P., Shi, C., Wang, L., Stransky, S., Doyle, M.E., Cui, C.Y., Delannoy, M., Fan, J., et al., 2023. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol. Cell 83, 1659-1676.
|
Yan, Z., Ji, L., Huo, X., Wang, Q., Zhang, Y., Wen, B., 2020. G9a/GLP-sensitivity of H3K9me2 demarcates two types of genomic compartments. Dev. Reprod. Biol. 18, 359-370.
|
Ye, Q., Callebaut, I., Pezhman, A., Courvalin, J. C., Worman, H. J., 1997. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983–14989.
|
Ye, Q., Worman, H. J., 1994. Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J. Biol. Chem. 269, 11306–11311.
|
Zacharias, W.J., Frank, D.B., Zepp, J.A., Morley, M.P., Alkhaleel, F.A., Kong, J., Zhou, S., Cantu, E., Morrisey, E.E., 2018. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251-255.
|
Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., Liu, X., Ren, R., Xu, X., Ocampo, A., et al., 2015. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163.
|
Zhao, H., Ji, Q., Wu, Z., Wang, S., Ren, J., Yan, K., Wang, Z., Hu, J., Chu, Q., Hu, H., et al., 2022. Destabilizing heterochromatin by APOE mediates senescence. Nat. Aging 2, 303-316.
|
Zheng, Y., Liu, A., Wang, Z.J., Cao, Q., Wang, W., Lin, L., Ma, K., Zhang, F., Wei, J., Matas, E., et al., 2019. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 142, 787-807.
|
Zhou, V.W., Goren, A., Bernstein, B.E., 2011. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7-18.
|
Zullo, J. M., Demarco, I. A., Piqué-Regi, R., Gaffney, D. J., Epstein, C. B., Spooner, C. J., Luperchio, T. R., Bernstein, B. E., Pritchard, J. K., Reddy, K. L., Singh, H., 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149, 1474–1487.
|