9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

Epigenetic basis for the establishment of ruminal tissue-specific functions in bovine fetuses and adults

doi: 10.1016/j.jgg.2024.10.008
Funds:

This research was funded by the Science and Technology Major Project of the Inner Mongolia Autonomous Region of China to the State Key Laboratory of Reproductive Regulation (2023KYPT0010 and 2021ZD0048), STI 2030-Major Projects (2023ZD0407504) of China, the development plan for young scientific and technological talents in colleges and universities of Inner Mongolia Autonomous Region of China (NMGIRT2204), and the National Natural Science Foundation of China (32160172).

  • Received Date: 2024-08-01
  • Accepted Date: 2024-10-27
  • Rev Recd Date: 2024-10-24
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-05
  • Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.
  • loading
  • Auclair, G., Guibert, S., Bender, A., Weber, M., 2014. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545.
    Baldwin, R.L., McLeod, K.R., Klotz, J.L., Heitmann, R.N., 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Diary Sci. 87, E55-E65.
    Barrenschee, M., Lange, C., Cossais, F., Egberts, J.H., Becker, T., Wedel, T., Bottner, M., 2015. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front. Cell. Neurosci. 9, 360.
    Benard, J., Douc-Rasy, S., Ahomadegbe, J.C., 2003. TP53 family members and human cancers. Hum. Mutat. 21, 182-191.
    Bogdanovic, O., Lister, R., 2017. DNA methylation and the preservation of cell identity. Curr. Opin. Genet. Dev. 46, 9-14.
    Bogliotti, Y.S., Wu, J., Vilarino, M., Okamura, D., Soto, D.A., Zhong, C., Sakurai, M., Sampaio, R.V., Suzuki, K., Izpisua Belmonte, J.C., et al., 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. U.S.A. 115, 2090-2095.
    Bousquet, O., Ma, L., Yamada, S., Gu, C., Idei, T., Takahashi, K., Wirtz, D., Coulombe, P.A., 2001. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J. Cell Biol. 155, 747-754.
    Cai, Y., Zhang, Y., Loh, Y.P., Tng, J.Q., Lim, M.C., Cao, Z., Raju, A., Lieberman Aiden, E., Li, S., Manikandan, L., et al., 2021. H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat. Commun. 12, 719.
    Cannon, M.V., Pilarowski, G., Liu, X., Serre, D., 2016. Extensive epigenetic changes accompany terminal differentiation of mouse hepatocytes after birth. G3 (Bethesda) 6, 3701-3709.
    Cedar, H., Bergman, Y., 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295-304.
    Chen, H., Li, H., Liu, F., Zheng, X., Wang, S., Bo, X., Shu, W., 2015. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Sci. Rep. 5, 8465.
    Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., et al., 2019. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202.
    Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al., 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 107, 21931-21936.
    Crispatzu, G., Rehimi, R., Pachano, T., Bleckwehl, T., Cruz-Molina, S., Xiao, C., Mahabir, E., Bazzi, H., Rada-Iglesias, A., 2021. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat. Commun. 12, 4344.
    DesCoteaux, L., Gnemmi, G., Colloton, J., 2009. Practical Atlas of Ruminant and Camelid Reproductive Ultrasonography. Blackwell Publishers.
    Domcke, S., Bardet, A.F., Adrian Ginno, P., Hartl, D., Burger, L., Schubeler, D., 2015. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575-579.
    Dzierzak, E., Philipsen, S., 2013. Erythropoiesis: development and differentiation. Cold Spring Harb. Perspect. Med. 3, a011601.
    Ernst, J., Kellis, M., 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215-216.
    Fang, L., Cai, W., Liu, S., Canela-Xandri, O., Gao, Y., Jiang, J., Rawlik, K., Li, B., Schroeder, S.G., Rosen, B.D., et al., 2020. Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Res. 30, 790-801.
    Fang, L., Liu, S., Liu, M., Kang, X., Lin, S., Li, B., Connor, E.E., Baldwin, R.L.t., Tenesa, A., Ma, L., et al., 2019. Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol. 17, 68.
    Feldman, N., Gerson, A., Fang, J., Li, E., Zhang, Y., Shinkai, Y., Cedar, H., Bergman, Y., 2006. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188-194.
    Fuhrmann, G., Chung, A.C., Jackson, K.J., Hummelke, G., Baniahmad, A., Sutter, J., Sylvester, I., Scholer, H.R., Cooney, A.J., 2001. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1, 377-387.
    Galfi, P., Neogrady, S., Sakata, T., 1991. Effects of Volatile Fatty Acids on the Epithelial Cell Proliferation of the Digestive Tract and its Hormonal Mediation, Physiological Aspects of Digestion and Metabolism in Ruminants. Elsevier, pp. 49-59.
    Gautier, E.F., Ducamp, S., Leduc, M., Salnot, V., Guillonneau, F., Dussiot, M., Hale, J., Giarratana, M.C., Raimbault, A., Douay, L., et al., 2016. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 16, 1470-1484.
    Gifford, C.A., Ziller, M.J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., Shalek, A.K., Kelley, D.R., Shishkin, A.A., Issner, R., et al., 2013. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149-1163.
    Gilliland, R., Bush, L., Friend, J., 1962. Relation of ration composition to rumen development in early-weaned dairy calves with observations on ruminal parakeratosis. J. Dairy Sci. 45, 1211-1217.
    Ginno, P.A., Gaidatzis, D., Feldmann, A., Hoerner, L., Imanci, D., Burger, L., Zilbermann, F., Peters, A., Edenhofer, F., Smallwood, S.A., et al., 2020. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat. Commun. 11, 2680.
    Gotea, V., Visel, A., Westlund, J.M., Nobrega, M.A., Pennacchio, L.A., Ovcharenko, I., 2010. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res. 20, 565-577.
    He, Y., Hariharan, M., Gorkin, D.U., Dickel, D.E., Luo, C., Castanon, R.G., Nery, J.R., Lee, A.Y., Zhao, Y., Huang, H., et al., 2020. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752-759.
    Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.
    Hoffman, M.M., Ernst, J., Wilder, S.P., Kundaje, A., Harris, R.S., Libbrecht, M., Giardine, B., Ellenbogen, P.M., Bilmes, J.A., Birney, E., et al., 2013. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41, 827-841.
    Inoue, A., Zhang, Y., 2011. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194.
    Ispada, J., da Fonseca Junior, A.M., de Lima, C.B., Dos Santos, E.C., Fontes, P.K., Nogueira, M.F.G., da Silva, V.L., Almeida, F.N., Leite, S.C., Chitwood, J.L., et al., 2020. Tricarboxylic acid cycle metabolites as mediators of DNA methylation reprogramming in bovine preimplantation embryos. Int. J. Mol. Sci. 21, 6868.
    Jiang, M., Li, H., Zhang, Y., Yang, Y., Lu, R., Liu, K., Lin, S., Lan, X., Wang, H., Wu, H., et al., 2017. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus. Nature 550, 529-533.
    Jones, P.A., 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492.
    Kern, C., Wang, Y., Xu, X., Pan, Z., Halstead, M., Chanthavixay, G., Saelao, P., Waters, S., Xiang, R., Chamberlain, A., et al., 2021. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat. Commun. 12, 1821.
    Kypriotou, M., Huber, M., Hohl, D., 2012. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp. Dermatol. 21, 643-649.
    Lavker, R.M., Matoltsy, A.G., 1970. Formation of horny cells: the fate of cell organelles and differentiation products in ruminal epithelium. J. Cell Biol. 44, 501-512.
    Li, C., Han, X., Wang, J., Liu, F., Zhang, Y., Li, Z., Lu, Z., Yue, Y., Xiang, J., Li, X., 2023. Mixed-lineage leukemia 1 inhibition enhances the differentiation potential of bovine embryonic stem cells by increasing H3K4 mono-methylation at active promoters. Int. J. Mol. Sci. 24, 11901.
    Li, E., Beard, C., Jaenisch, R., 1993. Role for DNA methylation in genomic imprinting. Nature 366, 362-365.
    Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., et al., 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.
    Loven, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I., Young, R.A., 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-334.
    Loyfer, N., Magenheim, J., Peretz, A., Cann, G., Bredno, J., Klochendler, A., Fox-Fisher, I., Shabi-Porat, S., Hecht, M., Pelet, T., et al., 2023. A DNA methylation atlas of normal human cell types. Nature 613 355-364.
    Luo, C., Hajkova, P., Ecker, J.R., 2018. Dynamic DNA methylation: in the right place at the right time. Science 361, 1336-1340.
    Lutz, P.E., Chay, M.A., Pacis, A., Chen, G.G., Aouabed, Z., Maffioletti, E., Theroux, J.F., Grenier, J.C., Yang, J., Aguirre, M., et al., 2021. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation. Nat. Commun. 12, 1132.
    Matsuo, K., Owens, J.M., Tonko, M., Elliott, C., Chambers, T.J., Wagner, E.F., 2000. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184-187.
    Millen, D.D., Pacheco, Rumenology, 2016. Rumenology, Cambridge International Law Journal.
    Ming, X.Y., Fu, L., Zhang, L.Y., Qin, Y.R., Cao, T.T., Chan, K.W., Ma, S., Xie, D., Guan, X.Y., 2016. Integrin alpha7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma. Nat. Commun. 7, 13568.
    Mohandas, T., Sparkes, R.S., Shapiro, L.J., 1981. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211, 393-396.
    Nakamura, T., Liu, Y.J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., Nakano, T., 2012. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415-419.
    Ngan, C.Y., Wong, C.H., Tjong, H., Wang, W., Goldfeder, R.L., Choi, C., He, H., Gong, L., Lin, J., Urban, B., et al., 2020. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat. Genet. 52, 264-272.
    Pachano, T., Sanchez-Gaya, V., Ealo, T., Mariner-Fauli, M., Bleckwehl, T., Asenjo, H.G., Respuela, P., Cruz-Molina, S., Munoz-San Martin, M., Haro, E., et al., 2021. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat. Genet. 53, 1036-1049.
    Pan, X., Cai, Y., Li, Z., Chen, X., Heller, R., Wang, N., Wang, Y., Zhao, C., Wang, Y., Xu, H., et al., 2021. Modes of genetic adaptations underlying functional innovations in the rumen. Sci. China Life Sci. 64, 1-21.
    Panigrahi, A., O'Malley, B.W., 2021. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 108.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., 2011. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825-2830.
    Popescu, D.M., Botting, R.A., Stephenson, E., Green, K., Webb, S., Jardine, L., Calderbank, E.F., Polanski, K., Goh, I., Efremova, M., et al., 2019. Decoding human fetal liver haematopoiesis. Nature 574, 365-371.
    Quenneville, S., Verde, G., Corsinotti, A., Kapopoulou, A., Jakobsson, J., Offner, S., Baglivo, I., Pedone, P.V., Grimaldi, G., Riccio, A., et al., 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361-372.
    Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., Wysocka, J., 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283.
    Ren, Z., Yao, R., Liu, Q., Deng, Y., Shen, L., Deng, H., Zuo, Z., Wang, Y., Deng, J., Cui, H., et al., 2019. Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats. PLoS One 14, e0221815.
    Riggs, A.D., 1975. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9-25.
    Rimoldi, M., Wang, N., Zhang, J., Villar, D., Odom, D.T., Taipale, J., Flicek, P., Roller, M., 2024. DNA methylation patterns of transcription factor binding regions characterize their functional and evolutionary contexts. Genome Biol. 25, 146.
    Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
    Sander, E., Warner, R., Harrison, H., Loosli, J., 1959. The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. J. Dairy Sci. 42, 1600-1605.
    Sankoda, N., Tanabe, W., Tanaka, A., Shibata, H., Woltjen, K., Chiba, T., Haga, H., Sakai, Y., Mandai, M., Yamamoto, T., et al., 2021. Epithelial expression of Gata4 and Sox2 regulates specification of the squamous-columnar junction via MAPK/ERK signaling in mice. Nat. Commun. 12, 560.
    Sasaki, H., Matsui, Y., 2008. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9, 129-140.
    Schultz, M.D., He, Y., Whitaker, J.W., Hariharan, M., Mukamel, E.A., Leung, D., Rajagopal, N., Nery, J.R., Urich, M.A., Chen, H., et al., 2015. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212-216.
    Smith, Z.D., Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204-220.
    Sundqvist, A., Vasilaki, E., Voytyuk, O., Bai, Y., Morikawa, M., Moustakas, A., Miyazono, K., Heldin, C.H., Ten Dijke, P., van Dam, H., 2020. TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene 39, 4436-4449.
    Szymanska, K., Makowska, K., Calka, J., Gonkowski, S., 2020. The endocrine disruptor bisphenol A (BPA) affects the enteric neurons immunoreactive to neuregulin 1 (NRG1) in the enteric nervous system of the porcine large intestine. Int. J. Mol. Sci. 21, 8743.
    Van Soest, P., 1994. Function of the ruminant forestomach. Nutritional ecology of the ruminant, 230-252.
    Vi, R.B., McLeod, K., Klotz, J., Heitmann, R., 2004. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. J. Dairy Sci. 87, E55-E65.
    Wang, Q., Li, M., Wu, T., Zhan, L., Li, L., Chen, M., Xie, W., Xie, Z., Hu, E., Xu, S., et al., 2022. Exploring epigenomic datasets by ChIPseeker. Curr. Protoc. 2, e585.
    Wang, X., Ouyang, H., Yamamoto, Y., Kumar, P.A., Wei, T.S., Dagher, R., Vincent, M., Lu, X., Bellizzi, A.M., Ho, K.Y., et al., 2011. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145, 1023-1035.
    Wang, X., Yang, L., Wang, Y.C., Xu, Z.R., Feng, Y., Zhang, J., Wang, Y., Xu, C.R., 2020. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res. 30, 1109-1126.
    Warner, R., Flatt, W., Loosli, J., 1956. Ruminant nutrition, dietary factors influencing development of ruminant stomach. J. Agric. Food Chem. 4, 788-792.
    Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., Young, R.A., 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319.
    Xiang, J., Wang, H., Zhang, Y., Wang, J., Liu, F., Han, X., Lu, Z., Li, C., Li, Z., Gao, Y., et al., 2021. LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine-mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS J. 288, 4394-4411.
    Xiang, R., Oddy, V.H., Archibald, A.L., Vercoe, P.E., Dalrymple, B.P., 2016. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 4, e1762.
    Yan, J., Enge, M., Whitington, T., Dave, K., Liu, J., Sur, I., Schmierer, B., Jolma, A., Kivioja, T., Taipale, M., et al., 2013. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154, 801-813.
    Zhang, B., Horvath, S., 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17.
    Zhao, L., Gao, X., Zheng, Y., Wang, Z., Zhao, G., Ren, J., Zhang, J., Wu, J., Wu, B., Chen, Y., et al., 2021. Establishment of bovine expanded potential stem cells. Proc. Natl. Acad. Sci. U.S.A. 118, e2018505118.
    Zhou, Y., Connor, E.E., Bickhart, D.M., Li, C., Baldwin, R.L., Schroeder, S.G., Rosen, B.D., Yang, L., Van Tassell, C.P., Liu, G.E., 2018. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm. GigaScience 7, giy039.
    Zhou, Y., Liu, S., Hu, Y., Fang, L., Gao, Y., Xia, H., Schroeder, S.G., Rosen, B.D., Connor, E.E., Li, C.J., et al., 2020. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol. 18, 85.
    Zhu, H., Wang, G., Qian, J., 2016. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 17, 551-565.
    Ziller, M.J., Gu, H., Muller, F., Donaghey, J., Tsai, L.T., Kohlbacher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein, B.E., et al., 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477-481.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return