Abdelrahman, M., Wei, Z., Rohila, J.S.,Zhao, K., 2021. Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement. Front. Plant Sci. 12, 721203.
|
Armario Najera, V., Twyman, R.M., Christou, P.,Zhu, C., 2019. Applications of multiplex genome editing in higher plants. Curr. Opin. Biotechnol. 59, 93-102.
|
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A.,Horvath, P., 2007. Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
|
Biswas, A., Gagnon, J.N., Brouns, S.J.J., Fineran, P.C.,Brown, C.M., 2013. Crisprtarget: bioinformatic prediction and analysis of crrna targets. RNA Biol. 10, 817-827.
|
Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C.,Hugenholtz, P., 2007. Crispr recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinf. 8, 209.
|
Boudry, P., Semenova, E., Monot, M., Datsenko, K.A., Lopatina, A., Sekulovic, O., Ospina-Bedoya, M., Fortier, L.-C., Severinov, K., Dupuy, B., et al., 2015. Function of the crispr-cas system of the human pathogen clostridium difficile. mBio 6, e01112-e01115.
|
Briner, A.E., Donohoue, P.D., Gomaa, A.A., Selle, K., Slorach, E.M., Nye, C.H., Haurwitz, R.E., Beisel, C.L., May, A.P.,Barrangou, R., 2014. Guide rna functional modules direct cas9 activity and orthogonality. Mol. Cell 56, 333-339.
|
Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R.,O'Toole, G.A., 2012. The crispr/cas adaptive immune system of pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194, 5728-5738.
|
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.,Madden, T.L., 2009. Blast+: architecture and applications. BMC Bioinf. 10, 421.
|
Chatterjee, P., Jakimo, N.,Jacobson, J.M., 2018. Minimal pam specificity of a highly similar spcas9 ortholog. Sci. Adv. 4, eaau0766.
|
Chyou, T.-Y.,Brown, C.M., 2019. Prediction and diversity of tracrrnas from type ii crispr-cas systems. RNA Biol. 16, 423-434.
|
Common, J., Morley, D., Westra, E.R.,van Houte, S., 2019. Crispr-cas immunity leads to a coevolutionary arms race between streptococcus thermophilus and lytic phage. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180098.
|
Crooks, G.E., Hon, G., Chandonia, J.-M.,Brenner, S.E., 2004. Weblogo: a sequence logo generator. Genome Res. 14, 1188-1190.
|
Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J.,Charpentier, E., 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
|
Demirci, S., Leonard, A., Essawi, K.,Tisdale, J.F., 2021. Crispr-cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol. Ther. Methods Clin. Dev. 23, 276-285.
|
Doench, J.G., 2018. Am i ready for crispr? A user's guide to genetic screens. Nat. Rev. Genet. 19, 67-80.
|
Esvelt, K.M., Mali, P., Braff, J.L., Moosburner, M., Yaung, S.J.,Church, G.M., 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116-1121.
|
Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.-S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al., 2021. Crispr-cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252-260.
|
Garneau, J.E., Dupuis, M.-v., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadn, A.H.,Moineau, S., 2010. The crispr/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71.
|
Gleditzsch, D., Pausch, P., Mller-Esparza, H., zcan, A., Guo, X., Bange, G.,Randau, L., 2019. Pam identification by crispr-cas effector complexes: diversified mechanisms and structures. RNA Biol. 16, 504-517.
|
Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., Cofsky, J.C., Kyrpides, N.C., Banfield, J.F.,Doudna, J.A., 2018. Programmed DNA destruction by miniature crispr-cas14 enzymes. Science 362, 839-842.
|
Heler, R., Samai, P., Modell, J.W., Weiner, C., Goldberg, G.W., Bikard, D.,Marraffini, L.A., 2015. Cas9 specifies functional viral targets during crispr-cas adaptation. Nature 519, 199-202.
|
Hidalgo-Cantabrana, C., Goh, Y.J., Pan, M., Sanozky-Dawes, R.,Barrangou, R., 2019. Genome editing using the endogenous type i crispr-cas system in lactobacillus crispatus. Proc. Natl. Acad. Sci. U. S. A. 116, 15774-15783.
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A.,Charpentier, E., 2012. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
|
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., dek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with alphafold. Nature 596, 583-589.
|
Kang, Y., Chu, C., Wang, F.,Niu, Y., 2019. Crispr/cas9-mediated genome editing in nonhuman primates. Dis. Model. Mech. 12, dmm039982.
|
Karah, N., Samuelsen, r., Zarrilli, R., Sahl, J.W., Wai, S.N.,Uhlin, B.E., 2015. Crispr-cas subtype i-fb in acinetobacter baumannii: evolution and utilization for strain subtyping. PLoS One 10, e0118205.
|
Kim, E., Koo, T., Park, S.W., Kim, D., Kim, K., Cho, H.-Y., Song, D.W., Lee, K.J., Jung, M.H., Kim, S., et al., 2017. In vivo genome editing with a small cas9 orthologue derived from campylobacter jejuni. Nat. Commun. 8, 14500.
|
Komor, A.C., Badran, A.H.,Liu, D.R., 2017. Crispr-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36.
|
Leenay, R.T., Maksimchuk, K.R., Slotkowski, R.A., Agrawal, R.N., Gomaa, A.A., Briner, A.E., Barrangou, R.,Beisel, C.L., 2016. Identifying and visualizing functional pam diversity across crispr-cas systems. Mol. Cell. 62, 137-147.
|
Li, Z., Wang, X., Xu, D., Zhang, D., Wang, D., Dai, X., Wang, Q., Li, Z., Gu, Y., Ouyang, W., et al., 2020. Dnb-based on-chip motif finding: a high-throughput method to profile different types of protein-DNA interactions. Sci. Adv. 6, eabb3350.
|
Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al., 2020. Evolutionary classification of crispr-cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67-83.
|
Mao, Y., Botella, J.R., Liu, Y.,Zhu, J.-K., 2019. Gene editing in plants: progress and challenges. Natl. Sci. Rev. 6, 421-437.
|
Mendoza, B.J.,Trinh, C.T., 2018. In silico processing of the complete crispr-cas spacer space for identification of pam sequences. Biotechnol. J. 13, e1700595.
|
Mitrofanov, A., Ziemann, M., Alkhnbashi, O.S., Hess, W.R.,Backofen, R., 2022. Crisprtracrrna: robust approach for crispr tracrrna detection. Bioinformatics 38, ii42-ii48.
|
Mu, Y., Zhang, C., Li, T., Jin, F.-J., Sung, Y.-J., Oh, H.-M., Lee, H.-G.,Jin, L., 2022. Development and applications of crispr/cas9-based genome editing in lactobacillus. Int. J. Mol. Sci. 23, 12852.
|
Musunuru, K., Chadwick, A.C., Mizoguchi, T., Garcia, S.P., DeNizio, J.E., Reiss, C.W., Wang, K., Iyer, S., Dutta, C., Clendaniel, V., et al., 2021. In vivo crispr base editing of pcsk9 durably lowers cholesterol in primates. Nature 593, 429-434.
|
Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C.A., Li, Z., Cress, B.F., Knott, G.J., Jacobsen, S.E., Banfield, J.F.,Doudna, J.A., 2020. Crispr-casΦ from huge phages is a hypercompact genome editor. Science 369, 333-337.
|
Pickar-Oliver, A.,Gersbach, C.A., 2019. The next generation of crispr-cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490-507.
|
Pyne, M.E., Bruder, M.R., Moo-Young, M., Chung, D.A.,Chou, C.P., 2016. Harnessing heterologous and endogenous crispr-cas machineries for efficient markerless genome editing in clostridium. Sci. Rep. 6, 25666.
|
Qin, Z., Yang, Y., Yu, S., Liu, L., Chen, Y., Chen, J.,Zhou, J., 2021. Repurposing the endogenous type i-e crispr/cas system for gene repression in gluconobacter oxydans wsh-003. ACS Synth. Biol. 10, 84-93.
|
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., et al., 2015. m genome editing using staphylococcus aureus cas9. Nature 520, 186-191.
|
Rybnicky, G.A., Fackler, N.A., Karim, A.S., Kpke, M.,Jewett, M.C., 2022. Spacer2pam: a computational framework to guide experimental determination of functional crispr-cas system pam sequences. Nucleic Acids Res. 50, 3523-3534.
|
Sun, A., Li, C.-P., Chen, Z., Zhang, S., Li, D.-Y., Yang, Y., Li, L.-Q., Zhao, Y., Wang, K., Li, Z., et al., 2023. The compact casπ (cas12l) 'bracelet' provides a unique structural platform for DNA manipulation. Cell Res. 33, 229-244.
|
Tang, L.C.,Gu, F., 2020. Next-generation crispr-cas for genome editing: focusing on the cas protein and pam. Yi Chuan 42, 236-249.
|
Vale, P.F.,Little, T.J., 2010. Crispr-mediated phage resistance and the ghost of coevolution past. Proc. Biol. Sci. 277, 2097-2103.
|
Walker, J.E., Lanahan, A.A., Zheng, T., Toruno, C., Lynd, L.R., Cameron, J.C., Olson, D.G.,Eckert, C.A., 2020. Development of both type i-b and type ii crispr/cas genome editing systems in the cellulolytic bacterium clostridium thermocellum. Metab. Eng. Commun. 10, e00116.
|
Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M.,Wang, Y., 2015. Structural and mechanistic basis of pam-dependent spacer acquisition in crispr-cas systems. Cell 163, 840-853.
|
Wang, J.Y.,Doudna, J.A., 2023. Crispr technology: a decade of genome editing is only the beginning. Science 379, eadd8643.
|
Xiao, Y., Ng, S., Nam, K.H.,Ke, A., 2017. How type ii crispr-cas establish immunity through cas1-cas2-mediated spacer integration. Nature 550, 137-141.
|
Xu, C., Zhou, Y., Xiao, Q., He, B., Geng, G., Wang, Z., Cao, B., Dong, X., Bai, W., Wang, Y., et al., 2021. Programmable rna editing with compact crispr-cas13 systems from uncultivated microbes. Nat. Methods 18, 499-506.
|
Xue, C.,Greene, E.C., 2021. DNA repair pathway choices in crispr-cas9-mediated genome editing. Trends Genet. 37, 639-656.
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single rna-guided endonuclease of a class 2 crispr-cas system. Cell 163, 759-771.
|
Zhang, J., Zong, W., Hong, W., Zhang, Z.-T.,Wang, Y., 2018. Exploiting endogenous crispr-cas system for multiplex genome editing in clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab. Eng. 47, 49-59.
|
Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.
|