Aguirre, J., Lambeth, J.D., 2010. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic. Biol. Med. 49, 1342-1353.
|
Alam, N., Goel, H.L., Zarif, M.J., Butterfield, J.E., Perkins, H.M., Sansoucy, B.G., Sawyer, T.K., Languino, L.R., 2007. The integrin-growth factor receptor duet. J. Cell. Physiol. 213, 649-653.
|
Banerjee, U., Girard, J.R., Goins, L.M., Spratford, C.M., 2019. Drosophila as a Genetic Model for Hematopoiesis. Genetics 211, 367-417.
|
Benmimoun, B., Polesello, C., Waltzer, L., Haenlin, M., 2012. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717.
|
Bokel, C., Brown, N.H., 2002. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311-321.
|
Cabodi, S., Moro, L., Bergatto, E., Boeri Erba, E., Di Stefano, P., Turco, E., Tarone, G., Defilippi, P., 2004. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem. Soc. Trans. 32, 438-442.
|
Cao, J., Ni, J., Ma, W., Shiu, V., Milla, L.A., Park, S., Spletter, M.L., Tang, S., Zhang, J., Wei, X., et al., 2014. Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics 197, 175-192.
|
Charng, W.L., Yamamoto, S., Jaiswal, M., Bayat, V., Xiong, B., Zhang, K., Sandoval, H., David, G., Gibbs, S., Lu, H.C., et al., 2014. Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol. 12, e1001777.
|
Chen, F., Su, R., Ni, S., Liu, Y., Huang, J., Li, G., Wang, Q., Zhang, X., Yang, Y., 2021. Context-dependent responses of Drosophila intestinal stem cells to intracellular reactive oxygen species. Redox Biol. 39, 101835.
|
Ching, W., Hang, H.C., Nusse, R., 2008. Lipid-independent secretion of a Drosophila Wnt protein. J. Biol. Chem. 283, 17092-17098.
|
Cho, B., Yoon, S.H., Lee, D., Koranteng, F., Tattikota, S.G., Cha, N., Shin, M., Do, H., Hu, Y., Oh, S.Y., et al., 2020. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483.
|
D'Souza, L.C., Kuriakose, N., Raghu, S.V., Kabekkodu, S.P., Sharma, A., 2022. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radic. Biol. Med. 193, 190-201.
|
Demircioglu, F.E., Burkhardt, P., Fasshauer, D., 2014. The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex. Proc. Natl. Acad. Sci. U. S. A. 111, 13828-13833.
|
Destalminil-Letourneau, M., Morin-Poulard, I., Tian, Y., Vanzo, N., Crozatier, M., 2021. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. Elife 10, e64672.
|
Dingjan, I., Linders, P.T.A., Verboogen, D.R.J., Revelo, N.H., Ter Beest, M., van den Bogaart, G., 2018. Endosomal and phagosomal SNAREs. Physiol. Rev. 98, 1465-1492.
|
Evans, C.J., Liu, T., Girard, J.R., Banerjee, U., 2022. Injury-induced inflammatory signaling and hematopoiesis in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 119, e2119109119.
|
Fischer, J.A., Eun, S.H., Doolan, B.T., 2006. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu. Rev. Cell Dev. Biol. 22, 181-206.
|
Girard, J.R., Goins, L.M., Vuu, D.M., Sharpley, M.S., Spratford, C.M., Mantri, S.R., Banerjee, U., 2021. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. Elife 10, e67516.
|
Goyal, M., Tomar, A., Madhwal, S., Mukherjee, T., 2022. Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 149, dev199550.
|
Greene, W., Zhang, W., He, M., Witt, C., Ye, F., Gao, S.J., 2012. The ubiquitin/proteasome system mediates entry and endosomal trafficking of Kaposi's sarcoma-associated herpesvirus in endothelial cells. PLoS Pathog. 8, e1002703.
|
Guo, Z., Neilson, L.J., Zhong, H., Murray, P.S., Zanivan, S., Zaidel-Bar, R., 2014. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci. Signal. 7, rs7.
|
Hao, Y., Jin, L.H., 2017. Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. Elife 6, e25094.
|
Hegedus, K., Takats, S., Kovacs, A.L., Juhasz, G., 2013. Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy 9, 1642-1646.
|
Honti, V., Cinege, G., Csordas, G., Kurucz, E., Zsamboki, J., Evans, C.J., Banerjee, U., Ando, I., 2013. Variation of NimC1 expression in Drosophila stocks and transgenic strains. Fly 7, 263-266.
|
Huang, H., Du, W., Brekken, R.A., 2017. Extracellular matrix induction of intracellular reactive oxygen species. Antioxid. Redox Signal. 27, 774-784.
|
Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350.
|
Itakura, E., Mizushima, N., 2013. Syntaxin 17: the autophagosomal SNARE. Autophagy 9, 917-919.
|
Jung, S.H., Evans, C.J., Uemura, C., Banerjee, U., 2005. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533.
|
Kapoor, A., Padmavathi, A., Madhwal, S., Mukherjee, T., 2022. Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth. EMBO Rep. 23, e52951.
|
Kaur, H., Sharma, S.K., Mandal, S., Mandal, L., 2019. Lar maintains the homeostasis of the hematopoietic organ in Drosophila by regulating insulin signaling in the niche. Development 146, dev178202.
|
Khadilkar, R.J., Ho, K.Y.L., Venkatesh, B., Tanentzapf, G., 2020. Integrins modulate extracellular matrix organization to control cell signaling during hematopoiesis. Curr. Biol. 30, 3316-3329.e5.
|
Khadilkar, R.J., Rodrigues, D., Mote, R.D., Sinha, A.R., Kulkarni, V., Magadi, S.S., Inamdar, M.S., 2014. ARF1-GTP regulates Asrij to provide endocytic control of Drosophila blood cell homeostasis. Proc. Natl. Acad. Sci. U. S. A. 111, 4898-4903.
|
Kharrat, B., Csordas, G., Honti, V., 2022. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int. J. Mol. Sci. 23, 7767.
|
Krzemien, J., Oyallon, J., Crozatier, M., Vincent, A., 2010. Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev. Biol. 346, 310-319.
|
Kurucz, E., Vaczi, B., Markus, R., Laurinyecz, B., Vilmos, P., Zsamboki, J., Csorba, K., Gateff, E., Hultmark, D., Ando, I., 2007. Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol. Hung. 58, 95-111.
|
Kwon, S.Y., Xiao, H., Glover, B.P., Tjian, R., Wu, C., Badenhorst, P., 2008. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev. Biol. 316, 538-547.
|
Linders, P.T., Horst, C.V., Beest, M.T., van den Bogaart, G., 2019. Stx5-mediated ER-Golgi transport in mammals and yeast. Cells 8, 780.
|
Louradour, I., Sharma, A., Morin-Poulard, I., Letourneau, M., Vincent, A., Crozatier, M., Vanzo, N., 2017. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. Elife 6, e25496.
|
Lowe, M., 2011. Structural organization of the Golgi apparatus. Curr. Opin. Cell Biol. 23, 85-93.
|
Luo, F., Yu, S., Jin, L.H., 2020. The posterior signaling center is an important microenvironment for homeostasis of the Drosophila lymph gland. Front. Cell Dev. Biol. 8, 382.
|
Luo, F., Zhang, C., Shi, Z., Mao, T., Jin, L.H., 2024. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. Insect Biochem. Mol. Biol. 173, 104176.
|
Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., Banerjee, U., 2007. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324.
|
Manders, E.M.M., Verbeek, F.J., Aten, J.A., 1993. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375-382.
|
Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., Banerjee, U., 2011. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600.
|
Monetta, P., Slavin, I., Romero, N., Alvarez, C., 2007. Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol. Biol. Cell 18, 2400-2410.
|
Morelli, E., Speranza, E.A., Pellegrino, E., Beznoussenko, G.V., Carminati, F., Garre, M., Mironov, A.A., Onorati, M., Vaccari, T., 2021. Activity of the SNARE protein SNAP29 at the rndoplasmic reticulum and Golgi apparatus. Front. Cell Dev. Biol. 9, 637565.
|
Moreno-Layseca, P., Icha, J., Hamidi, H., Ivaska, J., 2019. Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122-132.
|
Morin-Poulard, I., Vincent, A., Crozatier, M., 2013. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2, e25700.
|
Moro, L., Dolce, L., Cabodi, S., Bergatto, E., Boeri Erba, E., Smeriglio, M., Turco, E., Retta, S.F., Giuffrida, M.G., Venturino, M., et al., 2002. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 9405-9414.
|
Mukoyama, Y., Utani, A., Matsui, S., Zhou, S., Miyachi, Y., Matsuyoshi, N., 2007. T-cadherin enhances cell-matrix adhesiveness by regulating beta1 integrin trafficking in cutaneous squamous carcinoma cells. Genes Cells 12, 787-796.
|
Muppirala, M., Gupta, V., Swarup, G., 2011. Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol. Cell 103, 333-350.
|
Muppirala, M., Gupta, V., Swarup, G., 2012. Tyrosine phosphorylation of a SNARE protein, syntaxin 17: implications for membrane trafficking in the early secretory pathway. Biochim. Biophys. Acta 1823, 2109-2119.
|
Murali, T., Pacifico, S., Yu, J., Guest, S., Roberts, G.G., 3rd, Finley, R.L., Jr., 2011. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res. 39, D736-D743.
|
Neuman, S.D., Lee, A.R., Selegue, J.E., Cavanagh, A.T., Bashirullah, A., 2021. A novel function for Rab1 and Rab11 during secretory granule maturation. J. Cell Sci. 134, jcs259037.
|
Owusu-Ansah, E., Banerjee, U., 2009. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541.
|
Oyallon, J., Vanzo, N., Krzemien, J., Morin-Poulard, I., Vincent, A., Crozatier, M., 2016. Two independent functions of Collier/Early B Cell Factor in the control of Drosophila blood cell homeostasis. PLoS ONE 11, e0148978.
|
Ramroop, J.R., Heavner, M.E., Razzak, Z.H., Govind, S., 2021. A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog. 17, e1009615.
|
Reginato, M.J., Mills, K.R., Paulus, J.K., Lynch, D.K., Sgroi, D.C., Debnath, J., Muthuswamy, S.K., Brugge, J.S., 2003. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol. 5, 733-740.
|
Rodrigues, F.F., Harris, T.J.C., 2019. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 10, 403-410.
|
Rong, Y., Zhang, S., Nandi, N., Wu, Z., Li, L., Liu, Y., Wei, Y., Zhao, Y., Yuan, W., Zhou, C., et al., 2022. STING controls energy stress-induced autophagy and energy metabolism via STX17. J. Cell Biol. 221, e202202060.
|
Saito, K., Maeda, M., Katada, T., 2017. Regulation of the Sar1 GTPase cycle is necessary for large cargo secretion from the endoplasmic reticulum. Front. Cell Dev. Biol. 5, 75.
|
Satoh, T., Nakamura, Y., Satoh, A.K., 2016. The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors. Biol. Open 5, 1420-1430.
|
Schaefer, A., Nethe, M., Hordijk, P.L., 2012. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem. J. 442, 13-25.
|
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682.
|
Sechi, S., Frappaolo, A., Fraschini, R., Capalbo, L., Gottardo, M., Belloni, G., Glover, D.M., Wainman, A., Giansanti, M.G., 2017. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol. 7, 160257.
|
Sharma, S.K., Ghosh, S., Geetha, A.R., Mandal, S., Mandal, L., 2019. Cell adhesion-mediated actomyosin assembly regulates the activity of Cubitus Interruptus for hematopoietic progenitor maintenance in Drosophila. Genetics 212, 1279-1300.
|
Sinenko, S.A., Hung, T., Moroz, T., Tran, Q.M., Sidhu, S., Cheney, M.D., Speck, N.A., Banerjee, U., 2010. Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 116, 4612-4620.
|
Sinenko, S.A., Mandal, L., Martinez-Agosto, J.A., Banerjee, U., 2009. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756-763.
|
Sinenko, S.A., Shim, J., Banerjee, U., 2011. Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89.
|
Spratford, C.M., Goins, L.M., Chi, F., Girard, J.R., Macias, S.N., Ho, V.W., Banerjee, U., 2021. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 148, dev200216.
|
Steegmaier, M., Oorschot, V., Klumperman, J., Scheller, R.H., 2000. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol. Biol. Cell 11, 2719-2731.
|
Svineng, G., Ravuri, C., Rikardsen, O., Huseby, N.E., Winberg, J.O., 2008. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect. Tissue Res. 49, 197-202.
|
Takats, S., Glatz, G., Szenci, G., Boda, A., Horvath, G.V., Hegedus, K., Kovacs, A.L., Juhasz, G., 2018. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet. 14, e1007359.
|
Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., Juhasz, G., 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531-539.
|
Takats, S., Pircs, K., Nagy, P., Varga, A., Karpati, M., Hegedus, K., Kramer, H., Kovacs, A.L., Sass, M., Juhasz, G., 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25, 1338-1354.
|
Tattikota, S.G., Cho, B., Liu, Y., Hu, Y., Barrera, V., Steinbaugh, M.J., Yoon, S.H., Comjean, A., Li, F., Dervis, F., et al., 2020. A single-cell survey of Drosophila blood. Elife 9, e54818.
|
Tian, Y., Morin-Poulard, I., Liu, X., Vanzo, N., Crozatier, M., 2023. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 120, e2217862120.
|
Wang, C., Yoo, Y., Fan, H., Kim, E., Guan, K.L., Guan, J.L., 2010. Regulation of Integrin β 1 recycling to lipid rafts by Rab1a to promote cell migration. J. Biol. Chem. 285, 29398-29405.
|
Wang, Q., Wang, Y., Yu, F., 2018. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 145, dev164475.
|
Wang, T., Li, L., Hong, W., 2017. SNARE proteins in membrane trafficking. Traffic 18, 767-775.
|
Xavier, M.J., Williams, M.J., 2011. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells. PLoS ONE 6, e19504.
|
Xu, C., Franklin, B., Tang, H.W., Regimbald-Dumas, Y., Hu, Y., Ramos, J., Bosch, J.A., Villalta, C., He, X., Perrimon, N., 2020. An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc. Natl. Acad. Sci. U. S. A. 117, 464-471.
|
Yang, X.Z., Li, X.X., Zhang, Y.J., Rodriguez-Rodriguez, L., Xiang, M.Q., Wang, H.Y., Zheng, X.F., 2016. Rab1 in cell signaling, cancer and other diseases. Oncogene 35, 5699-5704.
|
Yu, J., Pacifico, S., Liu, G., Finley, R.L., Jr., 2008. DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9, 461.
|
Yu, S., Luo, F., Jin, L.H., 2018. The Drosophila lymph gland is an ideal model for studying hematopoiesis. Dev. Comp. Immunol. 83, 60-69.
|
Yu, S., Luo, F., Jin, L.H., 2021. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. Elife 10, e60870.
|
Yu, S., Luo, F., Xu, Y., Zhang, Y., Jin, L.H., 2022. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues. Front. Immunol. 13, 905370.
|
Zerial, M., McBride, H., 2001. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-117.
|
Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., Hultmark, D., 2004. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. U. S. A. 101, 14192-14197.
|
Zhang, J., Schulze, K.L., Hiesinger, P.R., Suyama, K., Wang, S., Fish, M., Acar, M., Hoskins, R.A., Bellen, H.J., Scott, M.P., 2007. Thirty-one flavors of Drosophila Rab proteins. Genetics 176, 1307-1322.
|
Zhang, P., Holowatyj, A.N., Roy, T., Pronovost, S.M., Marchetti, M., Liu, H., Ulrich, C.M., Edgar, B.A., 2019. An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling. Dev. Cell 49, 574-589.e5.
|
Zhang, Q., Li, J., Deavers, M., Abbruzzese, J.L., Ho, L., 2005. The subcellular localization of syntaxin 17 varies among different cell types and is altered in some malignant cells. J. Histochem. Cytochem. 53, 1371-1382.
|
Zhou, L., Xue, X., Yang, K., Feng, Z., Liu, M., Pastor-Pareja, J.C., 2023. Convergence of secretory, endosomal, and autophagic routes in trans-Golgi-associated lysosomes. J. Cell Biol. 222, e202203045.
|
Zielke, N., Korzelius, J., van Straaten, M., Bender, K., Schuhknecht, G.F.P., Dutta, D., Xiang, J., Edgar, B.A., 2014. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 7, 588-598.
|