9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila

doi: 10.1016/j.jgg.2024.11.001
Funds:

We thank Utpal Banerjee, Lucas Waltzer, Jiwon Shim, Jose´ Carlos Pastor-Pareja, Chao Tong, Erjun Ling and Rui Zhou for gifting the fly strains and Istvan Ando´, Martin Lowe, Ed Laufer, Yue Dong, Yangguang Hao, Michèle Crozatier and Developmental Studies Hybridoma Bank for providing the antibodies. We thank the Bloomington Drosophila Stock Center, Vienna Drosophila RNAi Center and TsingHua Fly Center for providing the fly stocks and Core Facility of Drosophila Resource and Technology, CEMCS, CAS for constructing transgenic flies. This work was supported by the National Natural Science Foundation of China (32170484 and 32300384), and the Fundamental Research Funds for the Central Universities (2572022DQ07 and 2572020AW04).

  • Received Date: 2024-07-19
  • Accepted Date: 2024-11-05
  • Rev Recd Date: 2024-11-01
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-13
  • Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and alters progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin is dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.
  • loading
  • Aguirre, J., Lambeth, J.D., 2010. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic. Biol. Med. 49, 1342-1353.
    Alam, N., Goel, H.L., Zarif, M.J., Butterfield, J.E., Perkins, H.M., Sansoucy, B.G., Sawyer, T.K., Languino, L.R., 2007. The integrin-growth factor receptor duet. J. Cell. Physiol. 213, 649-653.
    Banerjee, U., Girard, J.R., Goins, L.M., Spratford, C.M., 2019. Drosophila as a Genetic Model for Hematopoiesis. Genetics 211, 367-417.
    Benmimoun, B., Polesello, C., Waltzer, L., Haenlin, M., 2012. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717.
    Bokel, C., Brown, N.H., 2002. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311-321.
    Cabodi, S., Moro, L., Bergatto, E., Boeri Erba, E., Di Stefano, P., Turco, E., Tarone, G., Defilippi, P., 2004. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem. Soc. Trans. 32, 438-442.
    Cao, J., Ni, J., Ma, W., Shiu, V., Milla, L.A., Park, S., Spletter, M.L., Tang, S., Zhang, J., Wei, X., et al., 2014. Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics 197, 175-192.
    Charng, W.L., Yamamoto, S., Jaiswal, M., Bayat, V., Xiong, B., Zhang, K., Sandoval, H., David, G., Gibbs, S., Lu, H.C., et al., 2014. Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol. 12, e1001777.
    Chen, F., Su, R., Ni, S., Liu, Y., Huang, J., Li, G., Wang, Q., Zhang, X., Yang, Y., 2021. Context-dependent responses of Drosophila intestinal stem cells to intracellular reactive oxygen species. Redox Biol. 39, 101835.
    Ching, W., Hang, H.C., Nusse, R., 2008. Lipid-independent secretion of a Drosophila Wnt protein. J. Biol. Chem. 283, 17092-17098.
    Cho, B., Yoon, S.H., Lee, D., Koranteng, F., Tattikota, S.G., Cha, N., Shin, M., Do, H., Hu, Y., Oh, S.Y., et al., 2020. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483.
    D'Souza, L.C., Kuriakose, N., Raghu, S.V., Kabekkodu, S.P., Sharma, A., 2022. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radic. Biol. Med. 193, 190-201.
    Demircioglu, F.E., Burkhardt, P., Fasshauer, D., 2014. The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex. Proc. Natl. Acad. Sci. U. S. A. 111, 13828-13833.
    Destalminil-Letourneau, M., Morin-Poulard, I., Tian, Y., Vanzo, N., Crozatier, M., 2021. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. Elife 10, e64672.
    Dingjan, I., Linders, P.T.A., Verboogen, D.R.J., Revelo, N.H., Ter Beest, M., van den Bogaart, G., 2018. Endosomal and phagosomal SNAREs. Physiol. Rev. 98, 1465-1492.
    Evans, C.J., Liu, T., Girard, J.R., Banerjee, U., 2022. Injury-induced inflammatory signaling and hematopoiesis in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 119, e2119109119.
    Fischer, J.A., Eun, S.H., Doolan, B.T., 2006. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu. Rev. Cell Dev. Biol. 22, 181-206.
    Girard, J.R., Goins, L.M., Vuu, D.M., Sharpley, M.S., Spratford, C.M., Mantri, S.R., Banerjee, U., 2021. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. Elife 10, e67516.
    Goyal, M., Tomar, A., Madhwal, S., Mukherjee, T., 2022. Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 149, dev199550.
    Greene, W., Zhang, W., He, M., Witt, C., Ye, F., Gao, S.J., 2012. The ubiquitin/proteasome system mediates entry and endosomal trafficking of Kaposi's sarcoma-associated herpesvirus in endothelial cells. PLoS Pathog. 8, e1002703.
    Guo, Z., Neilson, L.J., Zhong, H., Murray, P.S., Zanivan, S., Zaidel-Bar, R., 2014. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci. Signal. 7, rs7.
    Hao, Y., Jin, L.H., 2017. Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. Elife 6, e25094.
    Hegedus, K., Takats, S., Kovacs, A.L., Juhasz, G., 2013. Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy 9, 1642-1646.
    Honti, V., Cinege, G., Csordas, G., Kurucz, E., Zsamboki, J., Evans, C.J., Banerjee, U., Ando, I., 2013. Variation of NimC1 expression in Drosophila stocks and transgenic strains. Fly 7, 263-266.
    Huang, H., Du, W., Brekken, R.A., 2017. Extracellular matrix induction of intracellular reactive oxygen species. Antioxid. Redox Signal. 27, 774-784.
    Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350.
    Itakura, E., Mizushima, N., 2013. Syntaxin 17: the autophagosomal SNARE. Autophagy 9, 917-919.
    Jung, S.H., Evans, C.J., Uemura, C., Banerjee, U., 2005. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533.
    Kapoor, A., Padmavathi, A., Madhwal, S., Mukherjee, T., 2022. Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth. EMBO Rep. 23, e52951.
    Kaur, H., Sharma, S.K., Mandal, S., Mandal, L., 2019. Lar maintains the homeostasis of the hematopoietic organ in Drosophila by regulating insulin signaling in the niche. Development 146, dev178202.
    Khadilkar, R.J., Ho, K.Y.L., Venkatesh, B., Tanentzapf, G., 2020. Integrins modulate extracellular matrix organization to control cell signaling during hematopoiesis. Curr. Biol. 30, 3316-3329.e5.
    Khadilkar, R.J., Rodrigues, D., Mote, R.D., Sinha, A.R., Kulkarni, V., Magadi, S.S., Inamdar, M.S., 2014. ARF1-GTP regulates Asrij to provide endocytic control of Drosophila blood cell homeostasis. Proc. Natl. Acad. Sci. U. S. A. 111, 4898-4903.
    Kharrat, B., Csordas, G., Honti, V., 2022. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int. J. Mol. Sci. 23, 7767.
    Krzemien, J., Oyallon, J., Crozatier, M., Vincent, A., 2010. Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev. Biol. 346, 310-319.
    Kurucz, E., Vaczi, B., Markus, R., Laurinyecz, B., Vilmos, P., Zsamboki, J., Csorba, K., Gateff, E., Hultmark, D., Ando, I., 2007. Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol. Hung. 58, 95-111.
    Kwon, S.Y., Xiao, H., Glover, B.P., Tjian, R., Wu, C., Badenhorst, P., 2008. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev. Biol. 316, 538-547.
    Linders, P.T., Horst, C.V., Beest, M.T., van den Bogaart, G., 2019. Stx5-mediated ER-Golgi transport in mammals and yeast. Cells 8, 780.
    Louradour, I., Sharma, A., Morin-Poulard, I., Letourneau, M., Vincent, A., Crozatier, M., Vanzo, N., 2017. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. Elife 6, e25496.
    Lowe, M., 2011. Structural organization of the Golgi apparatus. Curr. Opin. Cell Biol. 23, 85-93.
    Luo, F., Yu, S., Jin, L.H., 2020. The posterior signaling center is an important microenvironment for homeostasis of the Drosophila lymph gland. Front. Cell Dev. Biol. 8, 382.
    Luo, F., Zhang, C., Shi, Z., Mao, T., Jin, L.H., 2024. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. Insect Biochem. Mol. Biol. 173, 104176.
    Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., Banerjee, U., 2007. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324.
    Manders, E.M.M., Verbeek, F.J., Aten, J.A., 1993. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375-382.
    Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., Banerjee, U., 2011. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600.
    Monetta, P., Slavin, I., Romero, N., Alvarez, C., 2007. Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol. Biol. Cell 18, 2400-2410.
    Morelli, E., Speranza, E.A., Pellegrino, E., Beznoussenko, G.V., Carminati, F., Garre, M., Mironov, A.A., Onorati, M., Vaccari, T., 2021. Activity of the SNARE protein SNAP29 at the rndoplasmic reticulum and Golgi apparatus. Front. Cell Dev. Biol. 9, 637565.
    Moreno-Layseca, P., Icha, J., Hamidi, H., Ivaska, J., 2019. Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122-132.
    Morin-Poulard, I., Vincent, A., Crozatier, M., 2013. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2, e25700.
    Moro, L., Dolce, L., Cabodi, S., Bergatto, E., Boeri Erba, E., Smeriglio, M., Turco, E., Retta, S.F., Giuffrida, M.G., Venturino, M., et al., 2002. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 9405-9414.
    Mukoyama, Y., Utani, A., Matsui, S., Zhou, S., Miyachi, Y., Matsuyoshi, N., 2007. T-cadherin enhances cell-matrix adhesiveness by regulating beta1 integrin trafficking in cutaneous squamous carcinoma cells. Genes Cells 12, 787-796.
    Muppirala, M., Gupta, V., Swarup, G., 2011. Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol. Cell 103, 333-350.
    Muppirala, M., Gupta, V., Swarup, G., 2012. Tyrosine phosphorylation of a SNARE protein, syntaxin 17: implications for membrane trafficking in the early secretory pathway. Biochim. Biophys. Acta 1823, 2109-2119.
    Murali, T., Pacifico, S., Yu, J., Guest, S., Roberts, G.G., 3rd, Finley, R.L., Jr., 2011. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res. 39, D736-D743.
    Neuman, S.D., Lee, A.R., Selegue, J.E., Cavanagh, A.T., Bashirullah, A., 2021. A novel function for Rab1 and Rab11 during secretory granule maturation. J. Cell Sci. 134, jcs259037.
    Owusu-Ansah, E., Banerjee, U., 2009. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541.
    Oyallon, J., Vanzo, N., Krzemien, J., Morin-Poulard, I., Vincent, A., Crozatier, M., 2016. Two independent functions of Collier/Early B Cell Factor in the control of Drosophila blood cell homeostasis. PLoS ONE 11, e0148978.
    Ramroop, J.R., Heavner, M.E., Razzak, Z.H., Govind, S., 2021. A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog. 17, e1009615.
    Reginato, M.J., Mills, K.R., Paulus, J.K., Lynch, D.K., Sgroi, D.C., Debnath, J., Muthuswamy, S.K., Brugge, J.S., 2003. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol. 5, 733-740.
    Rodrigues, F.F., Harris, T.J.C., 2019. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 10, 403-410.
    Rong, Y., Zhang, S., Nandi, N., Wu, Z., Li, L., Liu, Y., Wei, Y., Zhao, Y., Yuan, W., Zhou, C., et al., 2022. STING controls energy stress-induced autophagy and energy metabolism via STX17. J. Cell Biol. 221, e202202060.
    Saito, K., Maeda, M., Katada, T., 2017. Regulation of the Sar1 GTPase cycle is necessary for large cargo secretion from the endoplasmic reticulum. Front. Cell Dev. Biol. 5, 75.
    Satoh, T., Nakamura, Y., Satoh, A.K., 2016. The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors. Biol. Open 5, 1420-1430.
    Schaefer, A., Nethe, M., Hordijk, P.L., 2012. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem. J. 442, 13-25.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682.
    Sechi, S., Frappaolo, A., Fraschini, R., Capalbo, L., Gottardo, M., Belloni, G., Glover, D.M., Wainman, A., Giansanti, M.G., 2017. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol. 7, 160257.
    Sharma, S.K., Ghosh, S., Geetha, A.R., Mandal, S., Mandal, L., 2019. Cell adhesion-mediated actomyosin assembly regulates the activity of Cubitus Interruptus for hematopoietic progenitor maintenance in Drosophila. Genetics 212, 1279-1300.
    Sinenko, S.A., Hung, T., Moroz, T., Tran, Q.M., Sidhu, S., Cheney, M.D., Speck, N.A., Banerjee, U., 2010. Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 116, 4612-4620.
    Sinenko, S.A., Mandal, L., Martinez-Agosto, J.A., Banerjee, U., 2009. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756-763.
    Sinenko, S.A., Shim, J., Banerjee, U., 2011. Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89.
    Spratford, C.M., Goins, L.M., Chi, F., Girard, J.R., Macias, S.N., Ho, V.W., Banerjee, U., 2021. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 148, dev200216.
    Steegmaier, M., Oorschot, V., Klumperman, J., Scheller, R.H., 2000. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol. Biol. Cell 11, 2719-2731.
    Svineng, G., Ravuri, C., Rikardsen, O., Huseby, N.E., Winberg, J.O., 2008. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect. Tissue Res. 49, 197-202.
    Takats, S., Glatz, G., Szenci, G., Boda, A., Horvath, G.V., Hegedus, K., Kovacs, A.L., Juhasz, G., 2018. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet. 14, e1007359.
    Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., Juhasz, G., 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531-539.
    Takats, S., Pircs, K., Nagy, P., Varga, A., Karpati, M., Hegedus, K., Kramer, H., Kovacs, A.L., Sass, M., Juhasz, G., 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25, 1338-1354.
    Tattikota, S.G., Cho, B., Liu, Y., Hu, Y., Barrera, V., Steinbaugh, M.J., Yoon, S.H., Comjean, A., Li, F., Dervis, F., et al., 2020. A single-cell survey of Drosophila blood. Elife 9, e54818.
    Tian, Y., Morin-Poulard, I., Liu, X., Vanzo, N., Crozatier, M., 2023. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 120, e2217862120.
    Wang, C., Yoo, Y., Fan, H., Kim, E., Guan, K.L., Guan, J.L., 2010. Regulation of Integrin β 1 recycling to lipid rafts by Rab1a to promote cell migration. J. Biol. Chem. 285, 29398-29405.
    Wang, Q., Wang, Y., Yu, F., 2018. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 145, dev164475.
    Wang, T., Li, L., Hong, W., 2017. SNARE proteins in membrane trafficking. Traffic 18, 767-775.
    Xavier, M.J., Williams, M.J., 2011. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells. PLoS ONE 6, e19504.
    Xu, C., Franklin, B., Tang, H.W., Regimbald-Dumas, Y., Hu, Y., Ramos, J., Bosch, J.A., Villalta, C., He, X., Perrimon, N., 2020. An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc. Natl. Acad. Sci. U. S. A. 117, 464-471.
    Yang, X.Z., Li, X.X., Zhang, Y.J., Rodriguez-Rodriguez, L., Xiang, M.Q., Wang, H.Y., Zheng, X.F., 2016. Rab1 in cell signaling, cancer and other diseases. Oncogene 35, 5699-5704.
    Yu, J., Pacifico, S., Liu, G., Finley, R.L., Jr., 2008. DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9, 461.
    Yu, S., Luo, F., Jin, L.H., 2018. The Drosophila lymph gland is an ideal model for studying hematopoiesis. Dev. Comp. Immunol. 83, 60-69.
    Yu, S., Luo, F., Jin, L.H., 2021. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. Elife 10, e60870.
    Yu, S., Luo, F., Xu, Y., Zhang, Y., Jin, L.H., 2022. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues. Front. Immunol. 13, 905370.
    Zerial, M., McBride, H., 2001. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-117.
    Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., Hultmark, D., 2004. A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. U. S. A. 101, 14192-14197.
    Zhang, J., Schulze, K.L., Hiesinger, P.R., Suyama, K., Wang, S., Fish, M., Acar, M., Hoskins, R.A., Bellen, H.J., Scott, M.P., 2007. Thirty-one flavors of Drosophila Rab proteins. Genetics 176, 1307-1322.
    Zhang, P., Holowatyj, A.N., Roy, T., Pronovost, S.M., Marchetti, M., Liu, H., Ulrich, C.M., Edgar, B.A., 2019. An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling. Dev. Cell 49, 574-589.e5.
    Zhang, Q., Li, J., Deavers, M., Abbruzzese, J.L., Ho, L., 2005. The subcellular localization of syntaxin 17 varies among different cell types and is altered in some malignant cells. J. Histochem. Cytochem. 53, 1371-1382.
    Zhou, L., Xue, X., Yang, K., Feng, Z., Liu, M., Pastor-Pareja, J.C., 2023. Convergence of secretory, endosomal, and autophagic routes in trans-Golgi-associated lysosomes. J. Cell Biol. 222, e202203045.
    Zielke, N., Korzelius, J., van Straaten, M., Bender, K., Schuhknecht, G.F.P., Dutta, D., Xiang, J., Edgar, B.A., 2014. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 7, 588-598.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return