9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 8
Aug.  2025
Turn off MathJax
Article Contents

Genomic insights into the genetic diversity, lateral gaits and high-altitude adaptation of Chakouyi (CKY) horses

doi: 10.1016/j.jgg.2024.11.008
Funds:

We would like to express our gratitude to the members of the Extending Station for Animal Husbandry and Veterinary Technology of Tianzhu Xizang Autonomous County for their help in sample collection and data acquisition. This research was supported by the Supercomputing Center of Lanzhou University and the Chakouyi horse conservation project from the Tianzhu Xizang Autonomous County Government ([20]0097).

  • Received Date: 2024-05-10
  • Accepted Date: 2024-11-13
  • Rev Recd Date: 2024-11-12
  • Publish Date: 2024-11-19
  • Chakouyi (CKY) horses from the Qinghai‒Xizang Plateau are well known for their unique lateral gaits and high-altitude adaptation, but genetic mechanisms underlying these phenotypes remain unclear. This study presents a comparison of 60 newly resequenced genomes of gaited CKY horses with 139 public genomes from 19 horse breeds. Population structure analyses (admixture, PCA, and neighbor-joining tree) reveal a close genetic relationship between CKY and other highland breeds (Tibetan and Chaidamu horses). Compared with other Chinese breeds, CKY horses present reduced nucleotide diversity (θπ) and lower inbreeding (FROH coefficient), suggesting possible selective pressures. A key region on chromosome 23 (Chr23: 22.3–22.6 Mb) is associated with the lateral gaits and harbors a highly prevalent nonsense mutation (Chr 23:22,391,254 C>A, Ser301STOP) in the DMRT3 gene, with an 88% homozygosity rate, which is strongly correlated with the distinctive gait of CKY horses. Furthermore, selection signals reveal that the EPAS1 gene is related to high-altitude adaptation, and the CAT gene contributes to altitude resilience in CKY horses. These findings suggest that preserving genetic diversity is essential for maintaining the unique gaits and high-altitude adaptations of CKY horses.
  • loading
  • Albertsdottir, E., Eriksson, S., Sigurdsson, A., Arnason, T., 2011. Genetic analysis of ‘breeding field test status’ in Icelandic horses. J. Anim. Breed. Genet. 128, 124-132.
    Alexander, D. H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.
    Andersson, L. S., Larhammar, M., Memic, F., Wootz, H., Schwochow, D., Rubin, C. J., Patra, K., Arnason, T., Wellbring, L., Hjalm, G., 2012. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488, 642-646.
    Bobbert, M. F., Alvarez, C. B. G., van Weeren, P. R., Roepstorff, L., Weishaupt, M. A., 2007. Validation of vertical ground reaction forces on individual limbs calculated from kinematics of horse locomotion. J. Exp. Biol. 210, 1885-1896.
    Browning, S. R., Browning, B. L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097.
    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., Wilson, J. F., 2018. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220-234.
    Chen, N., Xia, X., Hanif, Q., Zhang, F., Dang, R., Huang, B., Lyu, Y., Luo, X., Zhang, H., Yan, H., 2023. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat. Commun. 14, 7803.
    Cosgrove, E. J., Sadeghi, R., Schlamp, F., Holl, H. M., Moradi-Shahrbabak, M., Miraei-Ashtiani, S. R., Abdalla, S., Shykind, B., Troedsson, M., Stefaniuk-Szmukier, M., 2020. Genome diversity and the origin of the Arabian horse. Sci. Rep. 10, 9702.
    Curry, A., 2020. How the horse powered human prehistory. Science 370, 646-647.
    Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
    Dutto, D. J., Hoyt, D. F., Cogger, E. A., Wickler, S. J., 2004. Ground reaction forces in horses trotting up an incline and on the level over a range of speeds. J. Exp. Biol. 207, 3507-3514.
    Flockhart, M., Nilsson, L. C., Tais, S., Ekblom, B., Apro, W., Larsen, F. J., 2021. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metabol. 33, 957-970.
    Gessner, D. K., Ringseis, R., Eder, K., 2017. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 101, 605-628.
    Ghildiyal, K., Nayak, S. S., Rajawat, D., Sharma, A., Chhotaray, S., Bhushan, B., Dutt, T., Panigrahi, M., 2023. Genomic insights into the conservation of wild and domestic animal diversity: a review. Gene 886, 147719.
    Gonzalez-Candia, A., Veliz, M., Carrasco-Pozo, C., Castillo, R. L., Cardenas, J. C., Ebensperger, G., Reyes, R. V., Llanos, A. J., Herrera, E. A., 2019. Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol. 22, 101128.
    Grilz-Seger, G., Neuditschko, M., Ricard, A., Velie, B., Lindgren, G., Mesaric, M., Cotman, M., Horna, M., Dobretsberger, M., Brem, G., 2019. Genome-wide homozygosity patterns and evidence for selection in a set of European and near Eastern horse breeds. Genes 10, 491.
    Han, H., Randhawa, I., MacHugh, D. E., McGivney, B. A., Katz, L. M., Dugarjaviin, M., Hill, E. W., 2023. Selection signatures for local and regional adaptation in Chinese Mongolian horse breeds reveal candidate genes for hoof health. BMC Genom. 24, 35.
    Han, H., Zeng, L., Dang, R., Lan, X., Chen, H., Lei, C., 2015. The DMRT3 gene mutation in Chinese horse breeds. Anim. Genet. 46, 341-342.
    Hendrickson, S. L., 2013. A genome wide study of genetic adaptation to high altitude in feral Andean horses of the paramo. BMC Evol. Biol. 13, 273.
    Kalbfleisch, T., Rice, E., DePriest, M., Walenz, B., Hestand, M., Vermeesch, J., O'Connell, B., Fiddes, I., Vershinina, A., Petersen, J., 2018. EquCab3, an updated reference genome for the domestic horse. bioRxiv.
    Jansen, T., Forster, P., Levine, M. A., Oelke, H., Hurles, M., Renfrew, C., Weber, J., Olek, K., 2002. Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. U. S. A. vol. 99, 10905-10910.
    Konig, D., Neubauer, O., Nics, L., Kern, N., Berg, A., Bisse, E., Wagner, K. H., 2007. Biomarkers of exercise-induced myocardial stress in relation to inflammatory and oxidative stress. Exerc. Immunol. Rev. 13, 15-36.
    Kristjansson, T., Bjornsdottir, S., Sigurdsson, A., Andersson, L. S., Lindgren, G., Helyar, S. J., Klonowski, A. M., Arnason, T., 2014. The effect of the ‘Gait keeper’ mutation in the DMRT3 gene on gaiting ability in Icelandic horses. J. Anim. Breed. Genet. 131, 415-425.
    Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549.
    Lei, C. Z., Su, R., Bower, M. A., Edwards, C. J., Wang, X. B., Weining, S., Liu, L., Xie, W. M., Li, F., Liu, R. Y., 2009. Multiple maternal origins of native modern and ancient horse populations in China. Anim. Genet. 40, 933-944.
    Letunic, I., Bork, P., 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296.
    Li, H., Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, X., Wang, Z., Zhu, M., Wang, B., Teng, S., Yan, J., Yuan, P., Cao, S., Qu, X., Wang, Z., 2023. Genomic insights into post-domestication expansion and selection of body size in ponies. bioRxiv.
    Li, X., Yang, J., Shen, M., Xie, X., Liu, G., Xu, Y., Lv, F., Yang, H., Yang, Y., Liu, C., 2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 11, 2815.
    Li, X., Zhang, J., Liu, G., Wu, G., Wang, R., Zhang, J., 2024. High altitude hypoxia and oxidative stress: the new hope brought by free radical scavengers. Life Sci. 336, 122319.
    Li, Y., Liu, Y., Wang, M., Lin, X., Li, Y., Yang, T., Feng, M., Ling, Y., Zhao, C., 2022. Whole-genome sequence analysis reveals the origin of the Chakouyi horse. Genes 13, 2411.
    Librado, P., Fages, A., Gaunitz, C., Leonardi, M., Wagner, S., Khan, N., Hanghoej, K., Alquraishi, S. A., Alfarhan, A. H., Al-Rasheid, K. A., 2016. The evolutionary origin and genetic makeup of domestic horses. Genetics 204, 423-434.
    Librado, P., Khan, N., Fages, A., Kusliy, M. A., Suchan, T., Tonasso-Calviere, L., Schiavinato, S., Alioglu, D., Fromentier, A., Perdereau, A., 2021. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 598, 634-640.
    Ling, Y. H., Ma, Y. H., Guan, W. J., Cheng, Y. J., Wang, Y. P., Han, J. L., Mang, L., Zhao, Q. J., He, X. H., Pu, Y. B., 2011. Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers. Anim. Genet. 42, 56-65.
    Liu, X., Zhang, Y., Li, Y., Pan, J., Wang, D., Chen, W., Zheng, Z., He, X., Zhao, Q., Pu, Y., 2019. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol. 36, 2591-2603.
    Masella, R., Di Benedetto, R., Vari, R., Filesi, C., Giovannini, C., 2005. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 16, 577-586.
    McCoy, A. M., Beeson, S. K., Rubin, C. J., Andersson, L., Caputo, P., Lykkjen, S., Moore, A., Piercy, R. J., Mickelson, J. R., McCue, M. E., 2019. Identification and validation of genetic variants predictive of gait in standardbred horses. PLoS Genet. 15, e1008146.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
    Miao, B., Wang, Z., Li, Y., 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan Mastiff by introgression of the gray wolf from the Tibetan plateau. Mol. Biol. Evol. 34, 734-743.
    Nei, M., Li, W. H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. vol. 76, 5269-5273.
    Novo, I., Santiago, E., Caballero, A., 2022. The estimates of effective population size based on linkage disequilibrium are virtually unaffected by natural selection. PLoS Genet. 18, e1009764.
    Pan, J., Purev, C., Zhao, H., Zhang, Z., Wang, F., Wendoule, N., Qi, G., Liu, Y., Zhou, H., 2022. Discovery of exercise-related genes and pathway analysis based on comparative genomes of Mongolian originated Abaga and Wushen horse. Open Life Sci. 17, 1269-1281.
    Patterson, N., Price, A. L., Reich, D., 2006. Population structure and eigenanalysis. PLoS Genet. 2, e190.
    Peng, Y., Cui, C., He, Y., Ouzhuluobu, Zhang, H., Yang, D., Zhang, Q., Bianbazhuoma, Yang, L., He, Y., Xiang, K., Zhang, X., 2017. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Mol. Biol. Evol. 34, 818-830.
    Petersen, J. L., Mickelson, J. R., Rendahl, A. K., Valberg, S. J., Andersson, L. S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M. M., Borges, A. S., 2013. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 9, e1003211.
    Promerova, M., Andersson, L. S., Juras, R., Penedo, M. C., Reissmann, M., Tozaki, T., Bellone, R., Dunner, S., Horin, P., Imsland, F., et al., 2014. Worldwide frequency distribution of the 'Gait keeper' mutation in the DMRT3 gene. Anim. Genet. 45, 274-282.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
    Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D. M., 2012. The yak genome and adaptation to life at high altitude. Nat. Genet. 44, 946-949.
    Reid, G. A., 1991. Molecular cloning: a laboratory manual (2nd edn). Trends Biotechnol. 9, 213-214.
    Sarada, S., Himadri, P., Mishra, C., Geetali, P., Ram, M. S., Ilavazhagan, G., 2008. Role of oxidative stress and NFkB in hypoxia-induced pulmonary edema. Exp. Biol. Med. 233, 1088-1098.
    Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., Chang, W., 2022. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216-W221.
    Simonsen, M., Mailund, T., Pedersen, C. N. S., 2008. Rapid neighbour-joining. In Proceedings of the 8th Workshop in Algorithms in Bioinformatics (WABI) vol. 5251, 113-122.
    Srikanth, K., Kim, N., Park, W., Kim, J., Kim, K., Lee, K., Son, J., Chai, H., Choi, J., Jang, G., 2019. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci. Rep. 9, 16672.
    Staiger, E. A., Bellone, R. R., Sutter, N. B., Brooks, S. A., 2016. Morphological variation in gaited horse breeds. J. Equine Vet. Sci. 43, 55-65.
    Sun, Y., Fu, T., Jin, J., Murphy, R. W., Hillis, D. M., Zhang, Y., Che, J., 2018. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. U. S. A. vol. 115, E10634-E10641.
    Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings Bioinf. 14, 178-192.
    Vilstrup, J. T., Seguin-Orlando, A., Stiller, M., Ginolhac, A., Raghavan, M., Nielsen, S. C., Weinstock, J., Froese, D., Vasiliev, S. K., Ovodov, N. D., 2013. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8, e55950.
    Vincelette, A., 2023. The Characteristics, distribution, function, and origin of alternative lateral horse gaits. Animals 13, 2557.
    Wang, G., Fan, R., Zhai, W., Liu, F., Wang, L., Zhong, L., Wu, H., Yang, H., Wu, S., Zhu, C., 2014. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau. Genome Biol. Evol. 6, 2122-2128.
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
    Wei, C., Wang, H., Liu, G., Zhao, F., Kijas, J. W., Ma, Y., Lu, J., Zhang, L., Cao, J., Wu, M., 2016. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 6: 26770.
    Wolfsberger, W. W., Ayala, N. M., Castro-Marquez, S. O., Irizarry-Negron, V. M., Potapchuk, A., Shchubelka, K., Potish, L., Majeske, A. J., Oliver, L. F., Lameiro, A. D., 2022. Genetic diversity and selection in Puerto Rican horses. Sci. Rep. 12, 515.
    Wright, S., 1922. Coefficients of inbreeding and relationship. Am. Nat. 56, 330-338.
    Wu, D. D., Yang, C. P., Wang, M. S., Dong, K. Z., Yan, D. W., Hao, Z. Q., Fan, S. Q., Chu, S. Z., Shen, Q. S., Jiang, L. P., 2020. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Natl. Sci. Rev. 7, 952-963.
    Wutke, S., Andersson, L., Benecke, N., Sandoval-Castellanos, E., Gonzalez, J., Hallsson, J. H., Lougas, L., Magnell, O., Morales-Muniz, A., Orlando, L., 2016. The origin of ambling horses. Curr. Biol. 26, R697-R699.
    Yan, Z., Yang, J., Wei, W., Zhou, M., Mo, D., Wan, X., Ma, R., Wu, M., Huang, J., Liu, Y., 2024. A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues. Nat. Commun. 15, 3970.
    Yue, X. P., Qin, F., Campana, M. G., Liu, D. H., Mao, C. C., Wang, X. B., Lan, X. Y., Chen, H., Lei, C. Z., 2012. Characterization of cytochrome b diversity in Chinese domestic horses. Anim. Genet. 43, 624-626.
    Zhang, C., Dong, S., Xu, J., He, W., Yang, T., 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788.
    Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821-824.
    Zhang, Y.T., 2009. Survey report on Chakouyi horse breed resources. J. Anim. Husband. Veter. Med. 28 73-75. (In Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (17) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return