9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

Integrated analysis reveals that miR-548ab promotes the development of obesity and T2DM

doi: 10.1016/j.jgg.2024.11.011
  • Received Date: 2024-06-07
  • Accepted Date: 2024-11-17
  • Rev Recd Date: 2024-11-16
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-27
  • Dysregulation of microRNA (miRNA) expression following the development of obesity is closely linked to the onset of type 2 diabetes mellitus (T2DM). Identifying differentially expressed miRNAs and their roles in regulating glucose metabolism will provide a theoretical foundation for the molecular mechanisms underlying obesity-induced T2DM. Here, we perform a genome-wide association study involving 5 glycolipid metabolism traits in 1783 Kazakh and 1198 Uyghur individuals to identify miRNAs associated with fasting plasma glucose (FPG) levels. A miR-548ab mimic and inhibitor are administered to hepatocytes and adipocytes, as well as obese and diabetic mice, to determine miR-548ab-related downstream signalling pathways. The effects of miR-548ab on glucose metabolism are validated using the glucose tolerance test and insulin tolerance test. Collectively, these results indicate that miR-548ab is significantly associated with FPG levels and obesity-related T2DM in both Kazakh and Uyghur populations. The miR-548ab–GULP1/SLC25A21–GLUT4 network exerts regulatory effects on glucose metabolism, obesity, and T2DM, positioning it as a candidate risk factor, potential diagnostic marker, and therapeutic target for obesity-induced T2DM. Additionally, through evolutionary analysis, the authentic variants or haplotypes of GULP1 and SLC25A21 are categorized according to their genetic susceptibility to T2DM. The miR-548ab inhibitor shows beneficial effects in obese and diabetic mice.
  • loading
  • Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48.
    Boczonadi, V., King, M.S., Smith, A.C., Olahova, M., Bansagi, B., Roos, A., Eyassu, F., Borchers, C., Ramesh, V., Lochmuller, H., et al., 2018. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease. Genet. Med. 20, 1224-1235.
    Bradley, D., Smith, A.J., Blaszczak, A., Shantaram, D., Bergin, S.M., Jalilvand, A., Wright, V., Wyne, K.L., Dewal, R.S., Baer, L.A., et al., 2022. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606.
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7.
    Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., et al., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Dev. Reprod. Biol. 19, 578-583.
    DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., et al., 2015. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019.
    Delaneau, O., Marchini, J., Zagury, J.F., 2011. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179-181.
    2024. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2024. Nucleic Acids Res. 52, D18-D32.
    Gao, X., Salomon, C., Freeman, D.J., 2017. Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? Front. Endocrinol. 8, 202.
    Ge, Q., Brichard, S., Yi, X., Li, Q., 2014. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J. Immunol. Res. 2014, 987285.
    Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J., 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140-D144.
    Gurdasani, D., Carstensen, T., Fatumo, S., Chen, G., Franklin, C.S., Prado-Martinez, J., Bouman, H., Abascal, F., Haber, M., Tachmazidou, I., et al., 2019. Uganda genome resource enables insights into population history and genomic discovery in Africa. Cell 179, 984-1002.
    Hayashi, M., Guida, E., Inokawa, Y., Goldberg, R., Reis, L.O., Ooki, A., Pilli, M., Sadhukhan, P., Woo, J., Choi, W., et al., 2020. GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma. Sci. Signal. 13, eaba0443.
    Helgason, A., Palsson, S., Thorleifsson, G., Grant, S.F., Emilsson, V., Gunnarsdottir, S., Adeyemo, A., Chen, Y., Chen, G., Reynisdottir, I., et al., 2007. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218-225.
    Hertel, J., and Stadler, P.F., 2015. The expansion of animal microRNA families revisited. Life. 5, 905-920.
    Hosomi, K., Saito, M., Park, J., Murakami, H., Shibata, N., Ando, M., Nagatake, T., Konishi, K., Ohno, H., Tanisawa, K., et al., 2022. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat. Commun. 13, 4477.
    Howie, B.N., Donnelly, P., Marchini, J., 2009. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529.
    Janssen, L.M.M., Hiligsmann, M., Elissen, A.M.J., Joore, M.A., Schaper, N.C., Bosma, J.H.A., Stehouwer, C.D.A., Sep, S.J.S., Koster, A., Schram, M.T., et al., 2020. Burden of disease of type 2 diabetes mellitus: cost of illness and quality of life estimated using the Maastricht Study. Diabet. Med. 37, 1759-1765.
    Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
    Kiss, R.S., Ma, Z., Nakada-Tsukui, K., Brugnera, E., Vassiliou, G., McBride, H.M., Ravichandran, K.S., Marcel, Y.L., 2006. The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J. Biol. Chem. 281, 12081-12092.
    Kraft, T.S., Venkataraman, V.V., Wallace, I.J., Crittenden, A.N., Holowka, N.B., Stieglitz, J., Harris, J., Raichlen, D.A., Wood, B., Gurven, M., et al., 2021. The energetics of uniquely human subsistence strategies. Science 374, eabf0130.
    Kumar, S., Nei, M., Dudley, J., Tamura, K., 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings Bioinf. 9, 299-306.
    Lazar, M.A., 2005. How obesity causes diabetes: not a tall tale. Science 307, 373-375.
    Lewis, B.P., Burge, C.B., and Bartel, D.P., 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.
    Li, N., Wang, H., Yan, Z., Yao, X., Hong, J., Zhou, L., 2012. Ethnic disparities in the clustering of risk factors for cardiovascular disease among the Kazakh, Uygur, Mongolian and Han populations of Xinjiang: a cross-sectional study. BMC Publ. Health. 12, 499.
    Li, V.L., Kim, J.T., Long, J.Z., 2020. Adipose tissue lipokines: recent progress and future directions. Diabetes 69, 2541-2548.
    Loh, P.R., Kichaev, G., Gazal, S., Schoech, A.P., Price, A.L., 2018. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906-908.
    Ma, Z., Nie, Z., Luo, R., Casanova, J.E., Ravichandran, K.S., 2007. Regulation of Arf6 and ACAP1 signaling by the PTB-domain-containing adaptor protein GULP. Curr. Biol. 17, 722-727.
    Mahajan, A., Spracklen, C.N., Zhang, W., Ng, M.C.Y., Petty, L.E., Kitajima, H., Yu, G.Z., Rueger, S., Speidel, L., Kim, Y.J., et al., 2022. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560-572.
    Moltke, I., Grarup, N., Joergensen, M.E., Bjerregaard, P., Treebak, J.T., Fumagalli, M., Korneliussen, T.S., Andersen, M.A., Nielsen, T.S., Krarup, N.T., et al., 2014. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190-193.
    O'Bleness, M., Searles, V.B., Varki, A., Gagneux, P., Sikela, J.M., 2012. Evolution of genetic and genomic features unique to the human lineage. Nat. Rev. Genet. 13, 853-866.
    Pan, Y., Hui, X., Hoo, R.L.C., Ye, D., Chan, C.Y.C., Feng, T., Wang, Y., Lam, K.S.L., Xu, A., 2019. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Invest. 129, 834-849.
    Pickrell, J.K., and Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967.
    Szpiech, Z.A., and Hernandez, R.D., 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824-2827.
    Thomou, T., Mori, M.A., Dreyfuss, J.M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T.N., Winnay, J.N., Garcia-Martin, R., Grinspoon, S.K., et al., 2017. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450-455.
    Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
    Wahler, A., Beyer, A.S., Keller, I.E., Schnack, C., von Einem, B., Propper, C., Boeckers, T.M., Peltan, I.D., Strickland, D.K., Hyman, B.T., et al., 2013. Engulfment adaptor phosphotyrosine-binding-domain-containing 1 (GULP1) is a nucleocytoplasmic shuttling protein and is transactivationally active together with low-density lipoprotein receptor-related protein 1 (LRP1). Biochem. J. 450, 333-343.
    Williams, A.L., Jacobs, S.B., Moreno-Macias, H., Huerta-Chagoya, A., Churchhouse, C., Marquez-Luna, C., Garcia-Ortiz, H., Gomez-Vazquez, M.J., Burtt, N.P., Aguilar-Salinas, C.A., et al., 2014. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97-101.
    Yang, Z., Wei, Z., Wu, X., Yang, H., 2018. Screening of exosomal miRNAs derived from subcutaneous and visceral adipose tissues: determination of targets for the treatment of obesity and associated metabolic disorders. Mol. Med. Rep. 18, 3314-3324.
    Zhang, X., Liu, Q., Zhang, H., Zhao, S., Huang, J., Sovannary, T., Bunnath, L., Aun, H.S., Samnom, H., Su, B., et al., 2022. The distinct morphological phenotypes of Southeast Asian aborigines are shaped by novel mechanisms for adaptation to tropical rainforests. Natl. Sci. Rev. 9, nwab072.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return