9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 5
May  2025
Turn off MathJax
Article Contents

Advances in plant oxygen sensing: endogenous and exogenous mechanisms

doi: 10.1016/j.jgg.2024.11.014
Funds:

This study was supported by the National Natural Science Foundation of China (32200217, 32270302, and 32030006) and Natural Science Foundation of Sichuan Province (2024NSFSC0340).

  • Received Date: 2024-10-03
  • Accepted Date: 2024-11-26
  • Rev Recd Date: 2024-11-26
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-09
  • Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
  • loading
  • Aass, K., R., Kastnes, M., H., Standal, T., 2021. Molecular interactions and functions of IL-32. J. Leukoc. Biol. 109, 143-159.
    Abbas, M., Berckhan, S., Rooney, D., J., Gibbs, D., J., Vicente Conde, J., Sousa Correia, C., Bassel, G., W., Marin-de la Rosa, N., Leon, J., Alabadi, D., et al., 2015. Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Curr. Biol. 25, 1483-1488.
    Abbas, M., Sharma, G., Dambire, C., Marquez, J., Alonso-Blanco, C., Proano, K., Holdsworth, M., J., 2022. An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature 606, 565-569.
    Armstrong, J., Jones, R., E., Armstrong, W., 2006. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytol. 172, 719-731.
    Bailey-Serres, J., Voesenek, L., A., 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313-339.
    Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A.C.J., van Dongen, J.T., 2012a. Making sense of low oxygen sensing. Trends Plant Sci. 17, 129-138.
    Bailey-Serres, J., Lee, S.C., Brinton, E., 2012b. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698-1709.
    Barreto, P., Dambire, C., Sharma, G., Vicente, J., Osborne, R., Yassitepe, J., Gibbs, D., J., Maia, I., G., Holdsworth, M., J., Arruda, P., 2022. Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Curr. Biol. 32, 1403-1411.
    Bononi, A., Wang, Q., Zolondick, A., A., Bai, F., Steele-Tanji, M., Suarez, J., S., Pastorino, S., Sipes, A., Signorato, V., Ferro, A., et al., 2023. BAP1 is a novel regulator of HIF-1α. Proc. Natl. Acad. Sci. U. S. A. 120, e2217840120.
    Castellana, S., Triozzi, P., M., Dell'Acqua, M., Loreti, E., Perata, P., 2024. Environmental genome-wide association studies across precipitation regimes reveal that the E3 ubiquitin ligase MBR1 regulates plant adaptation to rainy environments. Plant Commun. 31, 101074.
    Chakraborty, A., A., Laukka, T., Myllykoski, M., Ringel, A., E., Booker, M., A., Tolstorukov, M., Y., Meng, Y., J., Meier, S., R., Jennings, R., B., Creech, A., L., et al., 2019. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363, 1217-1222.
    Chirinos, X., Licausi, F., 2024. Suffocated shoots: Hypoxia-induced synthesis of salicylic acid inhibits plant regeneration. Mol. Plant 17, 528-530.
    Daniel, K., Hartman, S., 2024. How plant roots respond to waterlogging. J. Exp. Bot. 75, 511-525.
    Dentant, C., 2018. The highest vascular plants on Earth. Alp. Bot. 128, 97-106.
    Deshaies, R., J., Joazeiro, C., A., 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434.
    Dissmeyer, N., 2019. Conditional protein function via N-degron pathway-mediated proteostasis in stress physiology. Annu. Rev. Plant Biol. 70, 83-117.
    El-Khateeb, E., A., Youssef, M., S., Mira, M., M., Igamberdiev, A., U., Hill, R., D., Stasolla, C., 2023. Interplay between the Brassica napus phytoglobin (BnPgb1), folic acid, and antioxidant responses enhances plant tolerance to waterlogging. Plant Sci. 334, 111775.
    Espenshade, P., J., Hughes, A., L., 2007. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401-427.
    Eysholdt-Derzso, E., Hause, B., Sauter, M., Schmidt-Schippers, R., R., 2024. Hypoxia reshapes Arabidopsis root architecture by integrating ERF-VII factor response and abscisic acid homoeostasis. Plant Cell Environ. 47, 2879-2894.
    Eysholdt-Derzso, E., Renziehausen, T., Frings, S., Frohn, S., von Bongartz, K., Igisch, C., P., Mann, J., Hager, L., Macholl, J., Leisse, D., et al., 2023. Endoplasmic reticulum-bound ANAC013 factor is cleaved by RHOMBOID-LIKE 2 during the initial response to hypoxia in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 120, e2221308120.
    Fan, B., Liao, K., Wang, L., N., Shi, L., L., Zhang, Y., Xu, L., J., Zhou, Y., Li, J., F., Chen, Y., Q., Chen, Q., F., et al., 2023. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol. Plant 16, 979-998.
    Fukao, T., Xu, K., Ronald, P., C., Bailey-Serres, J., 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18, 2021-2034.
    Fukao, T., Bailey-Serres, J., 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci U S A. 105, 16814-16819.
    Gibbs, D., J., Holdsworth, M., J., 2020. Every breath you take: new insights into plant and animal oxygen sensing. Cell 180, 22-24.
    Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J. et al., 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415-418.
    Gibbs, D., J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G., M., Berckhan, S., Marin-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S., P., et al., 2014. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369-379.
    Gibbs, D.J., Tedds, H.M., Labandera, A.M., Bailey, M., White, M.D., Hartman, S., Sprigg, C., Mogg, S.L., Osborne, R., Dambire, C., et al., 2018. Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATION 2. Nat. Commun. 9, 5438.
    Giuntoli, B., Lee, S., C., Licausi, F., Kosmacz, M., Oosumi, T., van Dongen, J., T., Bailey-Serres, J., Perata, P., 2014. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis. PLoS Biol. 12, e1001950.
    Gomez-Alvarez, E., M., Pucciariello, C., 2022. Cereal germination under low oxygen: molecular processes. Plants (Basel) 11, 460.
    Gonzali, S., Loreti, E., Cardarelli, F., Novi, G., Parlanti, S., Pucciariello, C., Bassolino, L., Banti, V., Licausi, F., Perata, P., 2015. Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nat. Plants 1, 15151.
    Gubler, F., Watts, R., J., Kalla, R., Matthews, P., Keys, M., Jacobsen, J., V., 1997. Cloning of a rice cDNA encoding a transcription factor homologous to barley GAMyb. Plant Cell Physiol. 38, 362-365.
    Guo, M., Yao,Y., Yin, K., Tan, L., Liu, M., Hou, J., Zhang, H., Liang, R., Zhang, X., Yang, H., et al., 2024. ACBP4-WRKY70-RAP2.12 module positively regulates submergence-induced hypoxia response in Arabidopsis thaliana. J. Integr. Plant Biol. 66, 1052-1067.
    Hammarlund, E.U., Flashman, E., Mohlin, S., Licausi, F., 2020. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 370, eaba3512.
    Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., Zhang, H., van Dongen, N., Bosman, F., Bassel, G., W., et al., 2019. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10, 4020.
    Hattori, Y., Nagai, K., Furukawa, S., Song, X., J., Kawano, R., Sakakibara, H., Wu, J., Z., Matsumoto, T., Yoshimura, A., Kitano, H., et al., 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
    Herzog, M., Pellegrini, E., Pedersen, O., 2023. A meta-analysis of plant tissue O2 dynamics. Functional Plant Biology 50, 519-531.
    He, Y., Sun, S., Zhao, J., Huang, Z., Peng, L., Huang, C., Tang, Z., Huang, Q., Wang, Z., 2023. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nat. Commun. 14, 2296.
    Hinz, M., Wilson, I., W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E., S., Sauter, M., Dolferus, R., 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153, 757-772.
    Hoang, H., H., Bailly, C., Corbineau, F., Leymarie, J., 2013. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. J. Exp. Bot. 64, 2017-2025.
    Hofmann, A., Wienkoop, S., Harder, S., Bartlog, F., Luthje, S., 2020. Hypoxia-responsive Class III peroxidases in maize roots: soluble and membrane-bound isoenzymes. Int. J. Mol. Sci. 21, 8872.
    Hsiao, P., Y., Zeng, C., Y., Shih, M., C., 2024. Group VII ethylene response factors forming distinct regulatory loops mediate submergence responses. Plant Physiol. 194, 1745-1763.
    Hua, X., X., Yokoyama, C., Wu, J., Briggs, M.R., Brown, M.S., Goldstein, J.L., Wang, X.D., 1993. SREBP-2, a second basic online at helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. U. S. A. 90, 11603-11607.
    Hughes, B.T., Espenshade, P.J., 2008. Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J. 27, 1491-1501.
    Iftekharuddaula, K.M., Ghosal, S., Gonzaga, Z.J., Amin, A., Barman, H.N., Yasmeen, R., et al., 2016. Allelic diversity of newly characterized submergence-tolerant rice (Oryza sativa L.) germplasm from Bangladesh. Genet. Resour. Crop Evol. 63, 859-867.
    Jimenez, J., C., Armstrong, W., Colmer, T., D., Pedersen, O., 2024. Overcoming constraints to measuring O2 diffusivity and consumption of intact roots. Plant Physiol. 30, 195, 283-286.
    Jung, K., H., Seo, Y., S., Walia, H., Cao, P., Fukao, T., Canlas, P., E., Amonpant, F., Bailey-Serres, J., Ronald, P., C., 2010. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol. 152, 1674-1692.
    Kaelin Jr, W.G., Ratcliffe, P.J., 2008. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell 30, 393-402.
    Kerpen, L., Niccolini, L., Licausi, F., van Dongen, J., T., Weits, D., A., 2019. Hypoxic conditions in crown galls induce plant anaerobic responses that support tumor proliferation. Front. Plant Sci. 10, 56.
    Kim, N., Y., Jang, Y., J., Park, O., K., 2018. AP2/ERF family transcription factors ORA59 and RAP2.3 interact in the nucleus and function together in ethylene responses. Front. Plant Sci. 9:1675. Erratum in: Front. Plant Sci. 10, 42.
    Koo, D., Lee, H., G., Bae, S., H., Lee, K., Seo, P., J., 2024. Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis. Mol. Plant 17, 395-408.
    Kretzschmar, T., Pelayo, M., A., Trijatmiko, K., R., Gabunada, L., F., Alam, R., Jimenez, R., Mendioro, M., S., Slamet-Loedin, I., H., Sreenivasulu, N., Bailey-Serres, J., et al., 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants 1, 15124.
    Kunkowska, A., B., Fontana, F., Betti, F., Soeur, R., Beckers, G., J., M., Meyer, C., De Jaeger, G., Weits, D., A., Loreti, E., Perata, P., 2023. Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 120, e2212474120.
    Kuroha, T., Nagai, K., Gamuyao, R., Wang, D. R., Furuta, T., Nakamori, M., Kitaoka, T., Adachi, K., Minami, A., Mori, Y., et al., 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361, 181-186.
    Lee, K., W., Chen, P., W., Lu, C., A., Chen, S., Ho, T., H., Yu, S., M., 2009. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal. 2, ra61.
    Lee, S., C., Mustroph, A., Sasidharan, R., Vashisht, D., Pedersen, O., Oosumi, T., Voesenek, L., A., Bailey-Serres, J., 2011. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol. 190, 457-471.
    Licausi, F., Giuntoli, B., Perata, P., 2020. Similar and yet different: oxygen sensing in animals and plants. Trends Plant Sci. 25, 6-9.
    Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A.C.J., Perata, P., Dongen, J.T., 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419-422.
    Licausi, F., van Dongen, J., T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., Perata, P., 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62, 302-315.
    Li, C., Ogorek, L., L., P., Liu, D., Pedersen, O., Sauter, M., 2023. A quantitative trait locus conferring flood tolerance to deepwater rice regulates the formation of two distinct types of aquatic adventitious roots. New Phytol. 238, 1403-1419.
    Li, C., Wang, L., Su, J., Li, W., Tang, Y., Zhao, N., Lou, L., Ou, X., Jia, D., Jiang, J., et al., 2024. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum. J. Exp. Bot. 75, 1479-1492.
    Li, G., Hu, S., Yang, J., Schultz, E., A., Clarke, K., Hou, H., 2017. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants. Plant Cell Rep. 36, 1225-1236.
    Li, G., Hu, S., Yang, J., Zhao, X., Kimura, S., Schultz, E., A., Hou, H., 2020. Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae). Plant Cell Rep. 39, 737-750.
    Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., Zhang, S., 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8, e1002767.
    Li, Y., Zhang, Y., Zhang, Y., 2018. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir. Med. 145, 145-152.
    Lin, C., C., Chao, Y., T., Chen, W., C., Ho, H., Y., Chou, M., Y., Li, Y., R., Wu, Y., L., Yang, H., A., Hsieh, H., Lin, C., S., et al., 2019. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl. Acad. Sci. U. S. A. 116, 3300-3309.
    Lin, C., Zhang, Z., Shen, X., Liu, D., Pedersen, O., 2024. Flooding-adaptive root and shoot traits in rice. Funct. Plant Biol. 51, FP23226.
    Liu, B., Jiang, Y., Tang, H., Tong, S., Lou, S., Shao, C., Zhang, J., Song, Y., Chen, N., Bi, H., et al., 2021. The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in Arabidopsis. Plant Cell 33, 1771-1789.
    Liu, B., Zheng, Y., Lou, S., Liu, M., Wang, W., Feng, X., Zhang, H., Song, Y., Liu, H., 2024. Coordination between two cis-elements of WRKY33, bound by the same transcription factor, confers humid adaption in Arabidopsis thaliana. Plant Mol. Biol. 114, 30.
    Lorbiecke, R., Sauter, M., 1999. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119, 21-30.
    Loreti, E., Perata, P., 2020. The many facets of hypoxia in plants. Plants (Basel) 9, 745.
    Lou, S., Guo, X., Liu, L., Song, Y., Zhang, L., Jiang, Y., Zhang, L., Sun, P., Liu, B., Tong, S., et al., 2022. Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana. Sci. Adv. 8, eabn8281.
    Lu, C., A., Ho, T., H., Ho, S., L., Yu, S., M., 2002. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14, 1963-1980.
    Lyons, T.W., 2007. Palaeoclimate: oxygen’s rise reduced. Nature 448, 1005-1006.
    Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S., 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653.
    Masson, N., Keeley, T.P., Giuntoli, B., White, M.D., Puerta, M.L., Perata, P., Hopkinson, R.J., Flashman, E., Licausi, F., Ratcliffe, P., J., 2019. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science 365, 65-69.
    Meng, X., Li, L., Pascual, J., Rahikainen, M., Yi, C., Jost, R., He, C., Fournier-Level, A., Borevitz, J., Kangasjarvi, S., Whelan, J., et al., 2022. GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. Plant Physiol. 188, 2039-2058.
    Mittal, L., Tayyeba, S., Sinha, A., K., 2022. Finding a breather for Oryza sativa: understanding hormone signalling pathways involved in rice plants to submergence stress. Plant Cell Environ. 45, 279-295.
    Nagai, K., Mori, Y., Ishikawa, S., Furuta, T., Gamuyao, R., Niimi, Y., Hobo, T., Fukuda, M., Kojima, M., Takebayashi, Y., et al., 2020. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584, 109-114.
    Niroula, R., Pucciariello, C., Ho, V., Novi, G., Fukao, T., Perata, P., 2012. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J. 72, 282-293.
    Okishio, T., Sasayama, D., Hirano, T., Akimoto, M., Itoh, K., Azuma, T., 2015. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis. J. Plant Physiol. 174, 49-54.
    Papdi, C., Perez-Salamo, I., Joseph, M., P., Giuntoli, B., Bogre, L., Koncz, C., Szabados, L., 2015. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82, 772-784.
    Parlanti, S., Kudahettige, N.P., Lombardi, L., Mensuali-Sodi, A., Alpi, A., Perata, P., Pucciariello, C., 2011. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann. Bot. 107, 1335-1343.
    Pedersen, O., Sauter, M., Colmer, T., D., Nakazono, M., 2021. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol. 229, 42-49.
    Perata, P., Pozueta-Romero, J., Akazawa, T., Yamaguchi, J., 1992. Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188, 611-618.
    Pucciariello, C., Boscari, A., Tagliani, A., Brouquisse, R., Perata, P., 2019. Exploring legume-rhizobia symbiotic models for waterlogging tolerance. Front. Plant Sci. 10, 578.
    Rhine, M., D., Stevens, G., Shannon, G., Wrather, A., Sleper, D., 2010. Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation Sci. 28, 135-142.
    Samal, R., Reddy, J.N., Rao, G.J.N., Roy, P.S., Subudhi, H.N., Pani, D., R., 2014. Haplotype diversity for Sub1QTL associated with submergence tolerance in rice landraces of Sundarban region. (West Bengal) of India. J. Exp. Biol. 2, 315-322.
    Sasidharan, R., Hartman, S., Liu, Z., Martopawiro, S., Sajeev, N., van Veen, H., Yeung, E., Voesenek, L., A., C., J., 2018. Signal dynamics and interactions during flooding stress. Plant Physiol. 176, 1106-1117.
    Schippers, J., H., M., von Bongartz, K., Laritzki, L., Frohn, S., Frings, S., Renziehausen, T., Augstein, F., Winkels, K., Sprangers, K., Sasidharan, R., et al., 2024. MEDIATOR SUBUNIT 25 modulates ERFVII-controlled hypoxia responses in Arabidopsis. Plant J. 120, 748-768.
    Schmidt, R., R., van Dongen, J., T., 2019. The ACBP1-RAP2.12 signalling hub: a new perspective on integrative signalling during hypoxia in plants. Plant Signal Behav. 14, e1651184.
    Singh, P., Sinha, A., K., 2016. A positive feedback loop governed by SUB1A1 interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 imparts submergence tolerance in Rice. Plant Cell 28, 1127-1143.
    Tamang, B., G., Magliozzi, J., O., Maroof, M., A., Fukao, T., 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ. 37, 2350-2365.
    Tang, H., Bi, H., Liu, B., Lou, S., Song, Y., Tong, S., Chen, N., Jiang, Y., Liu, J., Liu, H., 2021. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana. New Phytol. 229, 106-125.
    Tarhonskaya, H., Chowdhury, R., Leung, I., K., Loik, N., D., McCullagh, J., S., Claridge, T., D., Schofield, C., J., Flashman, E., 2014. Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochem. J. 463, 363-372.
    Triozzi, P., M., Brunello, L., Novi, G., Ferri, G., Cardarelli, F., Loreti, E., Perales, M., Perata, P., 2024. Spatiotemporal oxygen dynamics in young leaves reveal cyclic hypoxia in plants. Mol. Plant 17, 377-394.
    Valeri, M., C., Novi, G., Weits, D., A., Mensuali, A., Perata, P., Loreti, E., 2020. Botrytis cinerea induces local hypoxia in Arabidopsis leaves. New Phytol. 229, 173-185.
    van der Wel, H., Ercan, A., West, C., M., 2005. The Skp1 prolyl hydroxylase of Dictyostelium is related to the HIFα-class of animal prolyl 4-hydroxylases. J. Biol. Chem. 280, 14645-14655.
    van Dongen, J., T., Licausi, F., 2015. Oxygen sensing and signaling. Annu. Rev. Plant Biol. 66, 345-367.
    van Veen, H., Akman, M., Jamar, D., C., Vreugdenhil, D., Kooiker, M., van Tienderen, P., Voesenek, L., A., Schranz, M., E., Sasidharan, R., 2014. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ. 37, 2421-2432.
    Voesenek, L.A.C.J., Bailey-Serres, 2015. Flood adaptive traits and processes: an overview. New Phytol. 206, 57-73.
    Wang, F., Chen, Z., H., Shabala, S., 2017. Hypoxia sensing in plants: on a quest for ion channels as putative oxygen sensors. Plant Cell Physiol. 58, 1126-1142.
    Wang, Y., Jin, G., Song, S., Jin, Y., Wang, X., Yang, S., Shen, X., Gan, Y., Wang, Y., Li, R., et al., 2024. A peroxisomal cinnamate: CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination. Dev. cell 59, 1363-1378.
    Wei, X., Xu, H., Rong, W., Ye, X., Zhang, Z., 2019. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ. 42, 1471-1485.
    Weits, D. A., Kunkowska, A.B., Kamps, N.C.W., Portz, K.M.S., Packbier, N.K., Venza, Z.N., Gaillochet, C., Lohmann, J.U., Pedersen, O., Dongen, J.T., et al., 2019. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569, 714-717.
    Weits, D., A., van Dongen, J., T., Licausi, F., 2021. Molecular oxygen as a signaling component in plant development. New Phytol. 229, 24-35.
    West, C., M., Wang, Z., A., van der Wel, H., 2010. A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium. Biochim. Biophys Acta. 1800, 160-171.
    West, J.B., 2021. High altitude limits of living things. High Alt. Med. Biol. 22, 342-345.
    Wilson, J., W., Shakir, D., Batie, M., Frost, M., Rocha, S., 2020. Oxygen-sensing mechanisms in cells. FEBS J. 287, 3888-3906.
    Wood, C., C., Robertson, M., Tanner, G., Peacock, W., J., Dennis, E., S., Helliwell, C., A., 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U. S. A. 103, 14631-14636.
    Xie, L., J., Zhou, Y., Chen, Q., F., Xiao, S., 2021. New insights into the role of lipids in plant hypoxia responses. Prog Lipid Res. 81, 101072.
    Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A., M., Bailey-Serres, J., Ronald, P., C., Mackill, D., J., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.
    Xu, Y., Brown, K., A., Wang, Z., A., van der Wel, H., Teygong, C., Zhang, D., Blader, I., J., West, C., M., 2012a. The Toxoplasma Skp1 protein is modified by a cytoplasmic prolyl 4-hydroxylase associated with oxygen sensing in the social amoeba Dictyostelium. J. Biol. Chem. 287, 25098-250110.
    Xu, Y., Wang, Z.A., Green, R.S., West, C.M., 2012b. Role of the Skp1 prolyl-hydroxylation/glycosylation pathway in oxygen dependent submerged development of Dictyostelium. BMC Dev. Biol. 12, 31.
    Yasumura, Y., Pierik, R., Fricker, M., D., Voesenek, L., A., Harberd, N., P., 2012. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J. 72, 947-959.
    Yamauchi, T., Colmer, T., D., Pedersen, O., Nakazono, M., 2018. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 176, 1118-1130.
    Yu, F., Liang, K., Fang, T., Zhao, H., Han, X., Cai, M., Qiu, F., 2019. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 17, 2286-2298.
    Yu, W., W., Chen, Q., F., Liao, K., Zhou, D., M., Yang, Y., C., He, M., Yu, L., J., Guo, D., Y., Xiao, S., Xie, R., H., et al., 2024. The calcium-dependent protein kinase CPK16 regulates hypoxia-induced ROS production by phosphorylating the NADPH oxidase RBOHD in Arabidopsis. Plant Cell 36, 3451-3466.
    Zafari, S., Hebelstrup, K., H., Igamberdiev, A., U., 2020. Transcriptional and metabolic changes associated with phytoglobin expression during germination of barley seeds. Int. J. Mol. Sci. 21, 2796.
    Zahoor, M., Westhrin, M., Aass, K., R., Moen, S., H., Misund, K., Psonka-Antonczyk, K., M., Giliberto, M., Buene, G., Sundan, A., Waage, A., et al., 2017. Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss. Blood Adv. 1, 2656-2666.
    Zhao, Y., Wei, T., Yin, K., Q., Chen, Z., Gu, H., Qu, L., J., Qin, G., 2012. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol. 195, 450-460.
    Zhou, Y., Zhou, D., M., Yu, W., W., Shi, L., L., Zhang, Y., Lai, Y., X., Huang, L., P., Qi, H., Chen, Q., F., Yao, N., et al., 2022. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell 34, 889-909.
    Zubrycka, A., Dambire, C., Dalle Carbonare, L., Sharma, G., Boeckx, T., Swarup, K., Sturrock, C., J., Atkinson, B., S., Swarup, R., Corbineau, F., et al., 2023. ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat. Commun. 14, 4665.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return